論文の概要: LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
- arxiv url: http://arxiv.org/abs/2504.16078v1
- Date: Tue, 22 Apr 2025 17:57:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 16:57:19.276951
- Title: LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
- Title(参考訳): LLMs is Greedy Agents: of RL Fine-tuning on Decision-Making Abilities
- Authors: Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, Razvan Pascanu,
- Abstract要約: 我々は,Large Language Models (LLMs) が意思決定シナリオにおいてサブ最適に機能する理由を考察する。
自己生成型CoT論理の強化学習(Reinforcement Learning, RL)による微調整によるこれらの欠点の緩和を提案する。
- 参考スコア(独自算出の注目度): 21.42711537107199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
- Abstract(参考訳): LLM(Large Language Models)の成功は、様々なエージェントアプリケーションへの関心を喚起した。
鍵となる仮説は、共通感覚と CoT (Chain-of-Thought) 推論を利用するLLMは、複雑な領域を効果的に探索し、効率的に解けるというものである。
しかし、LLMエージェントは、最適下探索とノウハウのギャップ、モデルに存在する知識に効果的に作用できないことに悩まされている。
本研究では,LLMが意思決定シナリオにおいてサブ最適に機能する理由を体系的に研究する。
特に,難易度,周波数バイアス,ノウハウ・ドーピングギャップの3つの主要な障害モードについて詳しく検討した。
自己生成型CoT論理の強化学習(Reinforcement Learning, RL)による微調整によるこれらの欠点の緩和を提案する。
マルチアームバンディット, コンテキストバンディット, Tic-tac-toe を用いた実験により, RLファインチューニングがLLMの意思決定能力を高め, 探索を拡大し, ナウハウジングギャップを狭めることを示した。
最後に, 従来の探索機構である$\epsilon$-greedy や自己補正や自己整合性といった LLM 固有の手法を共に検討し, 意思決定における LLM のより効果的な微調整を実現する。
関連論文リスト
- R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Large Language Models Think Too Fast To Explore Effectively [0.0]
大規模言語モデルが、特にオープンなタスクにおいて、効果的に探索できる範囲は、まだ不明である。
本研究では、Little Alchemy 2をパラダイムとして、オープンエンドタスクにおいて、LLMが人間を超えることができるかどうかを検討する。
論文 参考訳(メタデータ) (2025-01-29T21:51:17Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。