AI-Based Vulnerability Analysis of NFT Smart Contracts
- URL: http://arxiv.org/abs/2504.16113v2
- Date: Thu, 24 Apr 2025 08:25:20 GMT
- Title: AI-Based Vulnerability Analysis of NFT Smart Contracts
- Authors: Xin Wang, Xiaoqi Li,
- Abstract summary: This study proposes an AI-driven approach to detect vulnerabilities in NFT smart contracts.<n>We collected 16,527 public smart contract codes, classifying them into five vulnerability categories: Risky Mutable Proxy, ERC-721 Reentrancy, Unlimited Minting, Missing Requirements, and Public Burn.<n>A random forest model was implemented to improve robustness through random data/feature sampling and multitree integration.
- Score: 6.378351117969227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid growth of the NFT market, the security of smart contracts has become crucial. However, existing AI-based detection models for NFT contract vulnerabilities remain limited due to their complexity, while traditional manual methods are time-consuming and costly. This study proposes an AI-driven approach to detect vulnerabilities in NFT smart contracts. We collected 16,527 public smart contract codes, classifying them into five vulnerability categories: Risky Mutable Proxy, ERC-721 Reentrancy, Unlimited Minting, Missing Requirements, and Public Burn. Python-processed data was structured into training/test sets. Using the CART algorithm with Gini coefficient evaluation, we built initial decision trees for feature extraction. A random forest model was implemented to improve robustness through random data/feature sampling and multitree integration. GridSearch hyperparameter tuning further optimized the model, with 3D visualizations demonstrating parameter impacts on vulnerability detection. Results show the random forest model excels in detecting all five vulnerabilities. For example, it identifies Risky Mutable Proxy by analyzing authorization mechanisms and state modifications, while ERC-721 Reentrancy detection relies on external call locations and lock mechanisms. The ensemble approach effectively reduces single-tree overfitting, with stable performance improvements after parameter tuning. This method provides an efficient technical solution for automated NFT contract detection and lays groundwork for scaling AI applications.
Related papers
- Enhancing Smart Contract Vulnerability Detection in DApps Leveraging Fine-Tuned LLM [0.7018579932647147]
Decentralized applications (DApps) face significant security risks due to vulnerabilities in smart contracts.
This paper proposes a novel approach leveraging fine-tuned Large Language Models (LLMs) to enhance smart contract vulnerability detection.
arXiv Detail & Related papers (2025-04-07T12:32:14Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.
Our framework incorporates two complementary strategies: internal TTC and external TTC.
We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Runtime Backdoor Detection for Federated Learning via Representational Dissimilarity Analysis [24.56608572464567]
Federated learning (FL) trains a shared model by aggregating model updates from distributed clients.
The decoupling of model learning from local data makes FL highly vulnerable to backdoor attacks.
We propose a novel approach to detecting malicious clients in an accurate, stable, and efficient manner.
arXiv Detail & Related papers (2025-03-06T14:23:18Z) - SmartLLM: Smart Contract Auditing using Custom Generative AI [0.0]
This paper introduces SmartLLM, a novel approach leveraging fine-tuned LLaMA 3.1 models with Retrieval-Augmented Generation (RAG)
By integrating domain-specific knowledge from ERC standards, SmartLLM achieves superior performance compared to static analysis tools like Mythril and Slither.
Experimental results demonstrate a perfect recall of 100% and an accuracy score of 70%, highlighting the model's robustness in identifying vulnerabilities.
arXiv Detail & Related papers (2025-02-17T06:22:05Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)
By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.
We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Terminating Differentiable Tree Experts [77.2443883991608]
We propose a neuro-symbolic Differentiable Tree Machine that learns tree operations using a combination of transformers and Representation Products.
We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts.
We additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically.
arXiv Detail & Related papers (2024-07-02T08:45:38Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps [46.58231605323107]
We propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models.
DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps.
We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
arXiv Detail & Related papers (2023-03-31T21:17:15Z) - Machine Learning Approach and Extreme Value Theory to Correlated
Stochastic Time Series with Application to Tree Ring Data [0.0]
Tree ring growth was used as an implementation in different aspects, for example, studying the history of buildings and environment.
The purpose of this paper is to use ML algorithms and Extreme Value Theory in order to analyse a set of tree ring widths data from nine trees growing in Nottinghamshire.
arXiv Detail & Related papers (2023-01-27T01:44:43Z) - An Approximation Method for Fitted Random Forests [0.0]
We study methods that approximate each fitted tree in the Random Forests model using the multinomial allocation of the data points to the leafs.
Specifically, we begin by studying whether fitting a multinomial logistic regression helps reduce the size while preserving the prediction quality.
arXiv Detail & Related papers (2022-07-05T17:28:52Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Sample Complexity of Tree Search Configuration: Cutting Planes and
Beyond [98.92725321081994]
State-of-the-art solvers integrate a myriad of cutting-plane techniques to speed up the underlying tree-search algorithm.
We prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution.
arXiv Detail & Related papers (2021-06-08T00:57:59Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - Bandit Linear Optimization for Sequential Decision Making and
Extensive-Form Games [102.23975166536326]
Tree-form sequential decision making (TFSDM) extends classical one-shot decision making by modeling tree-form interactions between an agent and a potentially adversarial environment.
It captures the online decision-making problems that each player faces in an extensive-form game, as well as Markov decision processes and partially-observable Markov decision processes where the agent conditions on observed history.
In this paper, we give the first algorithm for the bandit linear optimization problem for dilatedDM that offers both (i) linear-time losses and (ii) $O(sqrtT)$ cumulative regret in
arXiv Detail & Related papers (2021-03-08T05:00:13Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
Decision trees use the strategy of "divide-and-conquer" to divide a complex problem on the dependency between input features and labels into smaller ones.
Recent advances have greatly improved their performance in computational advertising, recommender system, information retrieval, etc.
arXiv Detail & Related papers (2021-01-20T16:47:59Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Model family selection for classification using Neural Decision Trees [4.286327408435937]
In this paper we propose a method to reduce the scope of exploration needed for the task.
The idea is to quantify how much it would be necessary to depart from trained instances of a given family, reference models (RMs) carrying rigid' decision boundaries.
arXiv Detail & Related papers (2020-06-20T01:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.