論文の概要: Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
- arxiv url: http://arxiv.org/abs/2504.16237v1
- Date: Tue, 22 Apr 2025 20:03:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.911451
- Title: Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
- Title(参考訳): PSMA PET/CT画像の深部分割による定量測定の総合的評価
- Authors: Obed Korshie Dzikunu, Amirhossein Toosi, Shadab Ahamed, Sara Harsini, Francois Benard, Xiaoxiao Li, Arman Rahmim,
- Abstract要約: 本研究では,自動深層学習に基づくセグメンテーション法から抽出した定量的測定の総合的な評価を行う。
前立腺癌の生化学的再発例の[18F]DCFPyL PET/CTによる380前立腺特異的膜抗原(PSMA)の検討を行った。
- 参考スコア(独自算出の注目度): 15.20796234043916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
- Abstract(参考訳): 本研究は,従来のDice similarity Coefficientアセスメントを超えて,自動ディープラーニングベースセグメンテーション法から抽出した定量的評価を総合的に行い,SUVmax,SUVmean,TLA,腫瘍容積(TMTV),病変数,病変拡大の6つの定量的指標に着目した。
Dice Loss, Dice Cross Entropy, Dice Focal Loss, L1 weighted Dice Focal Loss, L1 weighted Dice Focal Loss (L1DFL)。
評価の結果、L1DFLと組み合わせた注意U-Netは、Dice Lossと他の2つの複合損失モデル(特にSegResNet)が低性能であるのに対し、地上の真実(SUVmaxとTLAの一致相関=0.90-0.99)と最強の相関を達成した。
等価試験(TOST, α = 0.05, Delta = 20%)により、SUVの指標、病変数、TLAのパフォーマンスが向上し、L1DFLが最高の性能を示した。
一方,腫瘍の容積と病変の拡がりは,大きなばらつきを示した。
Bland-Altman, Coverage Probability, Total Deviation Index 分析により,本論文では,基礎的真理臨床測定値の定量化において,L1DFLが変動を最小化することを明らかにした。
コードは、https://github.com/ObedDzik/pca\_segment.git.comで公開されている。
関連論文リスト
- Adaptive Voxel-Weighted Loss Using L1 Norms in Deep Neural Networks for Detection and Segmentation of Prostate Cancer Lesions in PET/CT Images [16.92267561082044]
本研究では, PET/CTスキャンにおける転移性前立腺癌病変の自動検出と分節化に向けた, ディープニューラルネットワークの新たな損失関数L1-weighted Dice Loss (L1DFL)を提案する。
我々は,Attention U-NetとSegResNetの2つの3D畳み込みニューラルネットワークを訓練し,PETとCTのボリュームを入力として生成した。
L1DFLはテストセットで比較損失関数を少なくとも13%上回った。
論文 参考訳(メタデータ) (2025-02-04T22:45:16Z) - A Comprehensive Framework for Automated Segmentation of Perivascular Spaces in Brain MRI with the nnU-Net [37.179674347248266]
神経変性疾患では、PVS(perivascular space)の増大が一般的である。
現在不足している信頼性の高いPVS検出方法が必要である。
論文 参考訳(メタデータ) (2024-11-29T09:19:57Z) - Multi-modal Evidential Fusion Network for Trustworthy PET/CT Tumor Segmentation [5.839660501978193]
臨床環境では,PET画像とCT画像の画質は著しく変化し,ネットワークによって抽出されるモダリティ情報の不確実性が生じる。
我々は,CFL(Cross-Modal Feature Learning)とMTF(Multi-Modal Trustworthy Fusion)の2つの基本段階からなる,新しいMulti-Modal Evidential Fusion Network(MEFN)を提案する。
本モデルでは, 自動セグメンテーション結果の受け入れや拒絶の判断において, セグメンテーション結果の確実な不確実性を, 放射線技師に提供することができる。
論文 参考訳(メタデータ) (2024-06-26T13:14:24Z) - Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Patients Using a Longitudinally-Aware Segmentation Network [7.225391135995692]
小児Hodgkinリンパ腫患者に対する経時的PET/CT画像の定量化について検討した。
LAS-Netは、PET1から関連する特徴を伝達し、PET2の分析を知らせる。
F1スコア0.606のPET2の残存リンパ腫をLAS-Netが検出した。
論文 参考訳(メタデータ) (2024-04-12T17:20:57Z) - Self-calibrated convolution towards glioma segmentation [45.74830585715129]
我々は,nnU-Netネットワークの異なる部分における自己校正畳み込みを評価し,スキップ接続における自己校正加群が,拡張腫瘍と腫瘍コアセグメンテーションの精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-02-07T19:51:13Z) - 3D Lymphoma Segmentation on PET/CT Images via Multi-Scale Information Fusion with Cross-Attention [6.499725732124126]
本研究は,びまん性大細胞型B細胞リンパ腫(DLBCL)の正確な分節法を開発することを目的とする。
シフトウインドウ変換器とマルチスケール情報融合(MSIF)モジュールを用いた3次元デュアルブランチエンコーダセグメンテーション法を提案する。
このモデルは5倍のクロスバリデーションを用いて165名のDLBCL患者のデータセットを用いて訓練および検証を行った。
論文 参考訳(メタデータ) (2024-02-04T05:25:12Z) - Comprehensive framework for evaluation of deep neural networks in detection and quantification of lymphoma from PET/CT images: clinical insights, pitfalls, and observer agreement analyses [0.9958347059366389]
本研究はPET/CT画像からの自動リンパ腫分離における重要なギャップに対処する。
深層学習は悪性リンパ腫の病巣分類に応用されているが, アウト・オブ・ディストリビューション検査を取り入れた研究はほとんどない。
高い代謝活性を有する大強度病変に対して,ネットワークがより優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-11-16T06:58:46Z) - Generalized Dice Focal Loss trained 3D Residual UNet for Automated
Lesion Segmentation in Whole-Body FDG PET/CT Images [0.4630436098920747]
我々は,AutoPETチャレンジ2023のトレーニングデータセット上で,一般化Dice Focal Loss関数を用いて3次元残留UNetをトレーニングする。
予備試験段階では、平均アンサンブルは、それぞれ0.5417、0.8261ml、0.2538mlのDice類似係数(DSC)、偽陽性体積(FPV)、偽負体積(FNV)を達成した。
論文 参考訳(メタデータ) (2023-09-24T05:29:45Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
我々は、T2 MRIのみから、Willis(CoW)円の主大脳動脈の分節を合成するためのエンコーダ・デコーダモデルを提案する。
これは、セグメンテーションラベルを拡張することによって生成された学習されたローカルアテンションマップを使用し、ネットワークはCoWの合成に関連するT2 MRIからのみ情報を抽出する。
論文 参考訳(メタデータ) (2023-08-24T15:32:27Z) - Robust T-Loss for Medical Image Segmentation [56.524774292536264]
本稿では,医用画像分割のための新しいロバストな損失関数T-Lossを提案する。
提案した損失は、Student-t分布の負のログ類似度に基づいており、データ内の外れ値の処理を効果的に行うことができる。
実験の結果,T-Lossは2つの医療データセットのダイススコアにおいて従来の損失関数よりも優れていた。
論文 参考訳(メタデータ) (2023-06-01T14:49:40Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Deep PET/CT fusion with Dempster-Shafer theory for lymphoma segmentation [17.623576885481747]
PET/CTボリュームからのリンパ腫の検出とセグメンテーションは外科的適応と放射線治療に不可欠である。
PET/CT融合層を有するUNetを用いた悪性リンパ腫のセグメンテーションモデルを提案する。
Diceスコア0.726で正確なセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2021-08-11T19:24:40Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。