論文の概要: FairPlay: A Collaborative Approach to Mitigate Bias in Datasets for Improved AI Fairness
- arxiv url: http://arxiv.org/abs/2504.16255v1
- Date: Tue, 22 Apr 2025 20:30:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.91666
- Title: FairPlay: A Collaborative Approach to Mitigate Bias in Datasets for Improved AI Fairness
- Title(参考訳): FairPlay:AIフェアネスを改善するためのデータセットにおけるバイアス軽減のためのコラボレーションアプローチ
- Authors: Tina Behzad, Mithilesh Kumar Singh, Anthony J. Ripa, Klaus Mueller,
- Abstract要約: 本稿では,複数の利害関係者が協調的にデータセットをデバイアスできるWebベースのソフトウェアアプリケーションであるFairPlayを提案する。
われわれはFairPlayの成功を実証するユーザスタディを実施し、約5ラウンドのゲームプレイでコンセンサスを得ることができた。
- 参考スコア(独自算出の注目度): 16.830626731326284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The issue of fairness in decision-making is a critical one, especially given the variety of stakeholder demands for differing and mutually incompatible versions of fairness. Adopting a strategic interaction of perspectives provides an alternative to enforcing a singular standard of fairness. We present a web-based software application, FairPlay, that enables multiple stakeholders to debias datasets collaboratively. With FairPlay, users can negotiate and arrive at a mutually acceptable outcome without a universally agreed-upon theory of fairness. In the absence of such a tool, reaching a consensus would be highly challenging due to the lack of a systematic negotiation process and the inability to modify and observe changes. We have conducted user studies that demonstrate the success of FairPlay, as users could reach a consensus within about five rounds of gameplay, illustrating the application's potential for enhancing fairness in AI systems.
- Abstract(参考訳): 意思決定における公平性の問題は重要な問題であり、特に公正性の相違と相互に相容れないバージョンに対する様々な利害関係者の要求を考えると、重要である。
視点の戦略的相互作用を採用することは、特異な公正性の標準を強制する代替となる。
本稿では,複数の利害関係者が協調的にデータセットをデバイアスできるWebベースのソフトウェアアプリケーションであるFairPlayを提案する。
FairPlayを使えば、ユーザーは合意された公正性理論を使わずに、相互に受け入れられる結果に交渉し、到達することができる。
このようなツールがなければ、体系的な交渉プロセスの欠如や変更の修正や観察ができないため、合意に達することは極めて難しいでしょう。
われわれはFairPlayの成功を実証するユーザスタディを実施し、ユーザーは約5ラウンドのゲームプレイで合意に達することができ、AIシステムにおける公正性を高めるアプリケーションの可能性について説明してきた。
関連論文リスト
- FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
提案手法は,高品質なデータ拡張を実現し,コメンデーションフェアネスを改善する方法である。
具体的には,動的グラフ対逆学習フレームワークであるFairDgclを提案する。
FairDgclは、公正さと精度の両方を持つ拡張表現を同時に生成できることを示す。
論文 参考訳(メタデータ) (2024-10-23T04:43:03Z) - A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes [37.5215569371757]
ManyFairHPOはフェアネスを意識したモデル選択フレームワークで、実践者が複雑でニュアンスのあるフェアネスの客観的な風景をナビゲートすることを可能にする。
我々は,複数のフェアネス目標のバランス,自己充足的予言などのリスク軽減,公平性を考慮したモデリング決定における利害関係者の導出のための解釈可能な洞察の提供などにおけるMaryFairHPOの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-17T07:32:24Z) - Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing [0.0]
欧州連合の人工知能法は2024年8月1日に施行された。
リスクの高いAIアプリケーションは、厳格な透明性と公正な基準に従わなければならない。
本稿では,対実的公正性とピア比較戦略の強みを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-05T15:35:34Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Exploring Social Choice Mechanisms for Recommendation Fairness in SCRUF [11.43931298398417]
フェアネス問題の社会的選択の定式化は、フェアネスを意識したリコメンデーションに代わる、柔軟で多面的な代替手段を提供する。
選択と割り当ての異なるクラスが、異なるが一貫した公平さ/正確さのトレードオフをもたらすことを示す。
論文 参考訳(メタデータ) (2023-09-10T17:47:21Z) - Interpolating Item and User Fairness in Multi-Sided Recommendations [13.635310806431198]
我々は、新しいフェアレコメンデーションフレームワーク、問題(FAIR)を紹介します。
本稿では,リアルタイム学習とフェアレコメンデーションを同時に行う低レベルのアルゴリズム形式を提案する。
我々は,プラットフォーム収益を維持する上でのフレームワークと手法の有効性を実証するとともに,アイテムとユーザ双方に望ましい公平性を確保した。
論文 参考訳(メタデータ) (2023-06-12T15:00:58Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
プラットフォームアクションがバンディットアルゴリズムであり,両プラットフォームがユーザ参加を競うデュオポリー市場について検討する。
私たちの主な発見は、この市場における競争は、市場の結果をユーザーユーティリティと完全に一致させるものではないということです。
論文 参考訳(メタデータ) (2022-08-30T17:43:58Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
本稿では,VFLモデルの公平性を改善するために,FairVFL( Fair vertical federated learning framework)を提案する。
FairVFLの中核となる考え方は、分散化された機能フィールドに基づいたサンプルの統一的で公正な表現を、プライバシ保護の方法で学習することである。
ユーザのプライバシ保護のために,サーバ内の統一表現からプライベート情報を除去する対向学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-07T11:43:32Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
フェデレーテッド・ラーニングは、複数のパーティで機械学習モデルを学習するための有望なソリューションと見なされている。
フェアネスを意識したアグリゲーション手法によりグループフェアネスを高める新しいアルゴリズムであるFairFedを提案する。
提案手法は,高度の不均一な属性分布の下で,最先端の公正な学習フレームワークよりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-02T17:55:20Z) - Fairness for Cooperative Multi-Agent Learning with Equivariant Policies [24.92668968807012]
我々は協調型マルチエージェント学習のレンズを通して公正性を研究する。
マルチエージェント学習のためのグループベースのフェアネス尺度であるチームフェアネスを導入する。
次に、ポリシー最適化にチームフェアネスを取り入れます。
論文 参考訳(メタデータ) (2021-06-10T13:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。