論文の概要: Cyberoception: Finding a Painlessly-Measurable New Sense in the Cyberworld Towards Emotion-Awareness in Computing
- arxiv url: http://arxiv.org/abs/2504.16378v1
- Date: Wed, 23 Apr 2025 02:56:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.983768
- Title: Cyberoception: Finding a Painlessly-Measurable New Sense in the Cyberworld Towards Emotion-Awareness in Computing
- Title(参考訳): サイバー受容:コンピュータにおける感情認識に向けての、無痛で測定可能な新しい感覚を見つける
- Authors: Tadashi Okoshi, Zexiong Gao, Tan Yi Zhen, Takumi Karasawa, Takeshi Miki, Wataru Sasaki, Rajesh K. Balan,
- Abstract要約: 本研究の目的は,実生活におけるユーザの相互受容的あるいは類似した状態を説明できる他のデータ形式を決定することである。
10日間のin-lab/in-the-wildハイブリッド実験の結果、特定のサイバー受容型"Turn On"が明らかとなった。
我々は,サイバー受容が,ユーザフレンドリーなアプリケーションやサービスを開発するための基本的な構成要素になることを期待している。
- 参考スコア(独自算出の注目度): 2.375184471644373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Affective computing, recognizing users' emotions accurately is the basis of affective human-computer interaction. Understanding users' interoception contributes to a better understanding of individually different emotional abilities, which is essential for achieving inter-individually accurate emotion estimation. However, existing interoception measurement methods, such as the heart rate discrimination task, have several limitations, including their dependence on a well-controlled laboratory environment and precision apparatus, making monitoring users' interoception challenging. This study aims to determine other forms of data that can explain users' interoceptive or similar states in their real-world lives and propose a novel hypothetical concept "cyberoception," a new sense (1) which has properties similar to interoception in terms of the correlation with other emotion-related abilities, and (2) which can be measured only by the sensors embedded inside commodity smartphone devices in users' daily lives. Results from a 10-day-long in-lab/in-the-wild hybrid experiment reveal a specific cyberoception type "Turn On" (users' subjective sensory perception about the frequency of turning-on behavior on their smartphones), significantly related to participants' emotional valence. We anticipate that cyberoception to serve as a fundamental building block for developing more "emotion-aware", user-friendly applications and services.
- Abstract(参考訳): Affective Computingでは、ユーザーの感情を正確に認識することは、感情的な人間とコンピュータの相互作用の基礎となる。
ユーザの相互受容を理解することは、個々に異なる感情能力の理解に寄与する。
しかし、心拍数判別タスクのような既存のインターセプション測定手法には、よく制御された実験室環境や精密装置への依存など、いくつかの制限があるため、ユーザーのインターセプションの監視は困難である。
本研究の目的は, 実際の生活において, 利用者の知覚的状態や類似した状態を説明できる他の形態のデータを判定し, 新たな仮説的概念である「サイバロセプション」を提案し, 他者の感情関連能力と相関する特性を持つ「サイバロセプション」と, 利用者の日常生活における商品用スマートフォンデバイスに埋め込まれたセンサによってのみ測定できる「セプション」について検討することである。
10日間のin-lab/in-the-wildハイブリッド実験の結果、特定のサイバー受容型"Turn On"(スマートフォン上でのターンオン行動の頻度に関するユーザの主観的な感覚知覚)が、参加者の感情的有能性に大きく関係していることが判明した。
我々は,サイバー受容が,ユーザフレンドリーなアプリケーションやサービスを開発するための基本的な構成要素になることを期待している。
関連論文リスト
- Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
本研究では、視線追跡データ、時間的ダイナミクス、性格特性を統合することで、知覚と知覚の両方の感情の検出を大幅に向上させる方法について述べる。
本研究は,将来の情緒コンピューティングと人間エージェントシステムの設計を示唆するものである。
論文 参考訳(メタデータ) (2025-03-18T13:15:32Z) - Emotion Detection through Body Gesture and Face [0.0]
このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
論文 参考訳(メタデータ) (2024-07-13T15:15:50Z) - WEARS: Wearable Emotion AI with Real-time Sensor data [0.8740570557632509]
スマートウォッチセンサを用いてユーザの感情を予測するシステムを提案する。
英語と地域語を併用した動画をリアルタイムに収集する枠組みを設計する。
また、心拍数、加速度計、ジャイロセンサーデータなどの特徴が気分に与える影響について、アブレーション調査を行った。
論文 参考訳(メタデータ) (2023-08-22T11:03:00Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Multi-Cue Adaptive Emotion Recognition Network [4.570705738465714]
適応型マルチキューに基づく感情認識のための新しい深層学習手法を提案する。
提案手法とCAER-Sデータセットの最先端手法を比較した。
論文 参考訳(メタデータ) (2021-11-03T15:08:55Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
本稿では,短い内容から潜伏した個々の側面を推定する枠組みを提案する。
また,テキストコンテキストから感情を抽出する動的ドロップアウト共振器を備えた新しいアンサンブル分類器を提案する。
提案モデルでは,ノイズのある内容から感情を認識する上で,高い性能を実現することができる。
論文 参考訳(メタデータ) (2021-06-03T09:17:34Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。