Killing Two Birds with One Stone: Unifying Retrieval and Ranking with a Single Generative Recommendation Model
- URL: http://arxiv.org/abs/2504.16454v1
- Date: Wed, 23 Apr 2025 06:43:54 GMT
- Title: Killing Two Birds with One Stone: Unifying Retrieval and Ranking with a Single Generative Recommendation Model
- Authors: Luankang Zhang, Kenan Song, Yi Quan Lee, Wei Guo, Hao Wang, Yawen Li, Huifeng Guo, Yong Liu, Defu Lian, Enhong Chen,
- Abstract summary: Unified Generative Recommendation Framework (UniGRF) is a novel approach that integrates retrieval and ranking into a single generative model.<n>To enhance inter-stage collaboration, UniGRF introduces a ranking-driven enhancer module.<n>UniGRF significantly outperforms existing models on benchmark datasets.
- Score: 71.45491434257106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recommendation systems, the traditional multi-stage paradigm, which includes retrieval and ranking, often suffers from information loss between stages and diminishes performance. Recent advances in generative models, inspired by natural language processing, suggest the potential for unifying these stages to mitigate such loss. This paper presents the Unified Generative Recommendation Framework (UniGRF), a novel approach that integrates retrieval and ranking into a single generative model. By treating both stages as sequence generation tasks, UniGRF enables sufficient information sharing without additional computational costs, while remaining model-agnostic. To enhance inter-stage collaboration, UniGRF introduces a ranking-driven enhancer module that leverages the precision of the ranking stage to refine retrieval processes, creating an enhancement loop. Besides, a gradient-guided adaptive weighter is incorporated to dynamically balance the optimization of retrieval and ranking, ensuring synchronized performance improvements. Extensive experiments demonstrate that UniGRF significantly outperforms existing models on benchmark datasets, confirming its effectiveness in facilitating information transfer. Ablation studies and further experiments reveal that UniGRF not only promotes efficient collaboration between stages but also achieves synchronized optimization. UniGRF provides an effective, scalable, and compatible framework for generative recommendation systems.
Related papers
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
Federated learning has emerged as a distributed optimization paradigm.
We propose a novel modified framework wherein each client locally performs a perturbed gradient step.
We show that our algorithm speeds convergence up to a margin of 30 global rounds compared with FedAvg.
arXiv Detail & Related papers (2024-10-07T23:14:05Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
arXiv Detail & Related papers (2024-06-04T12:43:23Z) - Non-autoregressive Generative Models for Reranking Recommendation [9.854541524740549]
In a recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items.<n>We propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness.<n> NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
arXiv Detail & Related papers (2024-02-10T03:21:13Z) - UGC: Unified GAN Compression for Efficient Image-to-Image Translation [20.3126581529643]
We propose a new learning paradigm, Unified GAN Compression (UGC), with a unified objective to seamlessly prompt the synergy of model-efficient and label-efficient learning.
We formulate a heterogeneous mutual learning scheme to obtain an architecture-flexible, label-efficient and performance-excellent model.
arXiv Detail & Related papers (2023-09-17T15:55:09Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - A Generative Model for Relation Extraction and Classification [23.1277041729626]
We present a novel generative model for relation extraction and classification (which we call GREC)
We explore various encoding representations for the source and target sequences, and design effective schemes that enable GREC to achieve state-of-the-art performance on three benchmark RE datasets.
Our approach can be extended to extract all relation triples from a sentence in one pass.
arXiv Detail & Related papers (2022-02-26T21:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.