Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval
- URL: http://arxiv.org/abs/2504.05181v1
- Date: Mon, 07 Apr 2025 15:27:37 GMT
- Title: Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval
- Authors: Kidist Amde Mekonnen, Yubao Tang, Maarten de Rijke,
- Abstract summary: Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
- Score: 49.669503570350166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task, allowing for end-to-end optimization toward a unified global retrieval objective. However, existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively. While reinforcement learning-based methods, such as reinforcement learning from relevance feedback (RLRF), aim to address this misalignment through reward modeling, they introduce significant complexity, requiring the optimization of an auxiliary reward function followed by reinforcement fine-tuning, which is computationally expensive and often unstable. To address these challenges, we propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking, eliminating the need for explicit reward modeling and reinforcement learning. Experimental results on benchmark datasets, including MS MARCO document and Natural Questions, show that DDRO outperforms reinforcement learning-based methods, achieving a 7.4% improvement in MRR@10 for MS MARCO and a 19.9% improvement for Natural Questions. These findings highlight DDRO's potential to enhance retrieval effectiveness with a simplified optimization approach. By framing alignment as a direct optimization problem, DDRO simplifies the ranking optimization pipeline of GenIR models while offering a viable alternative to reinforcement learning-based methods.
Related papers
- Killing Two Birds with One Stone: Unifying Retrieval and Ranking with a Single Generative Recommendation Model [71.45491434257106]
Unified Generative Recommendation Framework (UniGRF) is a novel approach that integrates retrieval and ranking into a single generative model.
To enhance inter-stage collaboration, UniGRF introduces a ranking-driven enhancer module.
UniGRF significantly outperforms existing models on benchmark datasets.
arXiv Detail & Related papers (2025-04-23T06:43:54Z) - RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented Generation [33.85528514353727]
We introduce the Retrieval Preference Optimization (RPO) to adaptively leverage multi-source knowledge based on retrieval relevance.<n>RPO is the only RAG-dedicated alignment approach that quantifies the awareness of retrieval relevance in training.<n>Experiments on four datasets demonstrate that RPO outperforms RAG by 4-10% in accuracy without any extra component.
arXiv Detail & Related papers (2025-01-23T14:58:56Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.<n>We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion.
In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary.
We show that our framework is able to accommodate different generation models, retrievers, and programming languages.
arXiv Detail & Related papers (2024-03-15T06:59:43Z) - A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization [0.0]
We investigate nonlinear prediction in an online setting and introduce a hybrid model that effectively mitigates hand-designed features and manual model selection issues.
We employ a recurrent neural network (LSTM) for adaptive feature extraction from sequential data and a gradient boosting machinery (soft GBDT) for effective supervised regression.
We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets.
arXiv Detail & Related papers (2022-03-25T17:13:08Z) - A Generative Model for Relation Extraction and Classification [23.1277041729626]
We present a novel generative model for relation extraction and classification (which we call GREC)
We explore various encoding representations for the source and target sequences, and design effective schemes that enable GREC to achieve state-of-the-art performance on three benchmark RE datasets.
Our approach can be extended to extract all relation triples from a sentence in one pass.
arXiv Detail & Related papers (2022-02-26T21:17:18Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.