Preconditioning Natural and Second Order Gradient Descent in Quantum Optimization: A Performance Benchmark
- URL: http://arxiv.org/abs/2504.16518v1
- Date: Wed, 23 Apr 2025 08:44:18 GMT
- Title: Preconditioning Natural and Second Order Gradient Descent in Quantum Optimization: A Performance Benchmark
- Authors: Théo Lisart-Liebermann, Arcesio Castañeda Medina,
- Abstract summary: We introduce a novel approach to stabilizing BFGS updates against gradient noise.<n>To address noise sensitivity we show that incorporating apenalization in the BFGS update improved outcomes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optimization of parametric quantum circuits is technically hindered by three major obstacles: the non-convex nature of the objective function, noisy gradient evaluations, and the presence of barren plateaus. As a result, the selection of classical optimizer becomes a critical factor in assessing and exploiting quantum-classical applications. One promising approach to tackle these challenges involves incorporating curvature information into the parameter update. The most prominent methods in this field are quasi-Newton and quantum natural gradient methods, which can facilitate faster convergence compared to first-order approaches. Second order methods however exhibit a significant trade-off between computational cost and accuracy, as well as heightened sensitivity to noise. This study evaluates the performance of three families of optimizers on synthetically generated MaxCut problems on a shallow QAOA algorithm. To address noise sensitivity and iteration cost, we demonstrate that incorporating secant-penalization in the BFGS update rule (SP-BFGS) yields improved outcomes for QAOA optimization problems, introducing a novel approach to stabilizing BFGS updates against gradient noise.
Related papers
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
We investigate the roles of gradient normalization and clipping in ensuring the convergence of Gradient Descent (SGD) under heavy-tailed noise.
Our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise.
We introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - Variational quantum algorithm for enhanced continuous variable optical
phase sensing [0.0]
Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy quantum devices.
We implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light.
arXiv Detail & Related papers (2023-12-21T14:11:05Z) - Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm [0.7252027234425334]
We propose a novel adiabatic-passage-based parameter setting method.
This method remarkably reduces the optimization cost, specifically when applied to the 3-SAT problem, to a sublinear level.
arXiv Detail & Related papers (2023-11-30T01:06:41Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
arXiv Detail & Related papers (2023-07-19T17:22:44Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
We investigate non-batch optimization problems where the objective is an expectation over smooth loss functions.
Our work builds on the STORM algorithm, in conjunction with a novel approach to adaptively set the learning rate and momentum parameters.
arXiv Detail & Related papers (2021-11-01T15:43:36Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy quantum devices.
These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop.
A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device.
arXiv Detail & Related papers (2021-06-16T10:40:00Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.<n>We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.