論文の概要: Hyper-Transforming Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2504.16580v2
- Date: Thu, 24 Apr 2025 07:39:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 17:00:36.179693
- Title: Hyper-Transforming Latent Diffusion Models
- Title(参考訳): 超変態潜在拡散モデル
- Authors: Ignacio Peis, Batuhan Koyuncu, Isabel Valera, Jes Frellsen,
- Abstract要約: Inlicit Neural Representations (INR) と Transformer-based hypernetworks を潜在変数モデルに組み込むことにより,関数の新たな生成フレームワークを提案する。
提案手法はTransformer-based decoderを用いて遅延変数からINRパラメータを生成し,表現能力と計算効率の両方に対処する。
- 参考スコア(独自算出の注目度): 16.86455404636477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming-a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
- Abstract(参考訳): Inlicit Neural Representations (INR) と Transformer-based hypernetworks を潜在変数モデルに組み込むことにより,関数の新たな生成フレームワークを提案する。
拡張性に制限のあるMLPベースのハイパーネットワークに依存する従来の手法とは異なり、我々の手法はTransformerベースのデコーダを使用して潜在変数からINRパラメータを生成し、表現能力と計算効率の両方に対処する。
我々のフレームワークは、標準デコーダをトランスフォーマーベースのハイパーネットワークに置き換えることで、遅延拡散モデル(LDM)をINR生成に拡張する。
これにより、既存の生成モデルを完全な再トレーニングを必要とせず、INRベースの表現に効率的に適応することができる。
関連論文リスト
- Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition [10.302458835329539]
軽量トランスフォーマーモデルの性能向上のための新しい手法であるTransformer Re-パラメータ化を導入する。
実験の結果,提案手法は軽量トランスフォーマーの性能を常に改善し,大規模モデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-11-14T10:36:19Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
テーブル構造認識変換器のための自己教師付き事前学習(SSP)手法を提案する。
線形射影変換器とハイブリッドCNN変換器のパフォーマンスギャップは、TSRモデルにおける視覚エンコーダのSSPにより緩和できる。
論文 参考訳(メタデータ) (2024-02-23T19:34:06Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Decision Transformer: Reinforcement Learning via Sequence Modeling [102.86873656751489]
本稿では,シーケンスモデリング問題として強化学習(RL)を抽象化するフレームワークを提案する。
本稿では,RLを条件付きシーケンスモデルとして扱うアーキテクチャであるDecision Transformerを提案する。
その単純さにもかかわらず、Decision Transformerは、Atari、OpenAI Gym、Key-to-Doorタスク上での最先端のオフラインRLベースラインのパフォーマンスと一致または超過する。
論文 参考訳(メタデータ) (2021-06-02T17:53:39Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
トランスフォーマーで表現される最先端のニューラルネットワークモデル(LM)は非常に複雑である。
本稿では,トランスフォーマーLM推定のためのベイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-09T10:55:27Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
シークエンス・トゥ・シークエンス(seq2seq)音声変換(VC)モデルは、韻律を変換する能力によって魅力的である。
我々は,大規模コーパスが容易に利用できる他の音声処理タスク(通常,テキスト音声(TTS)と自動音声認識(ASR))から知識を伝達することを提案する。
このような事前訓練されたASRまたはTSモデルパラメータを持つVCモデルは、高忠実で高知能な変換可能な音声に対して効果的な隠れ表現を生成することができると論じる。
論文 参考訳(メタデータ) (2020-08-07T11:02:07Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。