論文の概要: WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2504.16655v1
- Date: Wed, 23 Apr 2025 12:22:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 16:31:27.029209
- Title: WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks
- Title(参考訳): トランスフォーマーを用いたエンコーダデコーダとグラフニューラルネットワークを用いたWiFiによるヒューマンフォールとアクティビティ認識
- Authors: Younggeol Cho, Elisa Motta, Olivia Nocentini, Marta Lagomarsino, Andrea Merello, Marco Crepaldi, Arash Ajoudani,
- Abstract要約: トランスフォーマーベースのデコーダネットワーク(TEDNet)は、WiFi信号から人間の骨格のポーズを推定するために設計された。
TED Netは、畳み込みエンコーダとトランスフォーマーベースのアテンション機構を統合し、CSI信号から骨格の特徴をキャプチャする。
- 参考スコア(独自算出の注目度): 8.427757893042374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human pose estimation and action recognition have received attention due to their critical roles in healthcare monitoring, rehabilitation, and assistive technologies. In this study, we proposed a novel architecture named Transformer based Encoder Decoder Network (TED Net) designed for estimating human skeleton poses from WiFi Channel State Information (CSI). TED Net integrates convolutional encoders with transformer based attention mechanisms to capture spatiotemporal features from CSI signals. The estimated skeleton poses were used as input to a customized Directed Graph Neural Network (DGNN) for action recognition. We validated our model on two datasets: a publicly available multi modal dataset for assessing general pose estimation, and a newly collected dataset focused on fall related scenarios involving 20 participants. Experimental results demonstrated that TED Net outperformed existing approaches in pose estimation, and that the DGNN achieves reliable action classification using CSI based skeletons, with performance comparable to RGB based systems. Notably, TED Net maintains robust performance across both fall and non fall cases. These findings highlight the potential of CSI driven human skeleton estimation for effective action recognition, particularly in home environments such as elderly fall detection. In such settings, WiFi signals are often readily available, offering a privacy preserving alternative to vision based methods, which may raise concerns about continuous camera monitoring.
- Abstract(参考訳): ヒトのポーズ推定と行動認識は、医療モニタリング、リハビリテーション、補助技術において重要な役割を担っているため注目されている。
本研究では、WiFiチャネル状態情報(CSI)から人体骨格のポーズを推定するためのトランスフォーマーベースのエンコーダデコーダネットワーク(TEDNet)という新しいアーキテクチャを提案する。
TED Netは、畳み込みエンコーダと変換器ベースのアテンション機構を統合し、CSI信号から時空間の特徴をキャプチャする。
推定スケルトンポーズは、アクション認識のためにカスタマイズされたダイレクトグラフニューラルネットワーク(DGNN)の入力として使用された。
一般的なポーズ推定を評価するための公開されているマルチモーダルデータセットと、20人の参加者が関与する転倒関連シナリオに焦点を当てた、新たに収集されたデータセットの2つのデータセット上で、私たちのモデルを検証した。
実験の結果、TED Netはポーズ推定において既存のアプローチよりも優れており、DGNNはCSIベースのスケルトンを用いた信頼性の高い動作分類を実現し、RGBベースのシステムに匹敵する性能を示した。
特にTED Netは、フォールケースとノンフォールケースの両方で堅牢なパフォーマンスを維持している。
これらの知見は, 高齢者の転倒検出などの在宅環境において, 効果的な行動認識のためのCSIによるヒト骨格推定の可能性を強調した。
このような設定では、WiFi信号は容易に利用でき、ビジョンベースの方法に代わるプライバシー保護を提供する。
関連論文リスト
- Learning a Neural Association Network for Self-supervised Multi-Object Tracking [34.07776597698471]
本稿では,多目的追跡のためのデータアソシエーションを自己管理的に学習するための新しいフレームワークを提案する。
実世界のシナリオでは、オブジェクトの動きが通常マルコフプロセスで表現できるという事実により、我々は、トラッキングのための検出を関連付けるためにニューラルネットワークをトレーニングする新しい期待(EM)アルゴリズムを提案する。
我々は,挑戦的なMOT17とMOT20データセットに対するアプローチを評価し,自己教師付きトラッカーと比較して最先端の結果を得る。
論文 参考訳(メタデータ) (2024-11-18T12:22:29Z) - Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human
Activity Recognition [1.7404865362620803]
WiFi Channel State Information (CSI) は、屋内環境におけるコンタクトレスおよび視覚的プライバシー保護センシングを可能にする。
環境条件やセンサーハードウェアの多様さにより、低モデル一般化はこの分野でよく知られた問題である。
画像ベース学習で一般的に使用されるデータ拡張技術は、Wi-Fi CSIに適用され、モデル一般化性能への影響を調べる。
論文 参考訳(メタデータ) (2024-01-01T22:27:59Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point
Clouds [51.47100091540298]
本稿では,グローバルおよびローカルなプリミティブ検出ネットワークの検出結果をアダプティブパッチサンプリングネットワークに依存したCPFN(Cascaded Primitive Fitting Networks)を提案する。
CPFNは、高解像度のポイントクラウドデータセット上で、最先端のSPFNのパフォーマンスを13-14%改善し、特に20-22%の微細プリミティブの検出を改善している。
論文 参考訳(メタデータ) (2021-08-31T23:27:33Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method [1.027974860479791]
入力シーケンス中の代表フレームの自動選択により,前処理フェーズの課題に対処する。
本稿では,バックグラウンドサブトラクションとHOGを用いたハイブリッド手法を提案し,続いて深層ニューラルネットワークと骨格モデリング手法を適用した。
本稿では,このモデルをFR-DL(Feature Reduction & Deep Learning based action recognition method)と呼ぶ。
論文 参考訳(メタデータ) (2020-07-06T15:12:50Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
深層話者埋め込みに基づく話者認識システムは,制御条件下での大幅な性能向上を実現している。
制御されていない雑音環境下での短い発話に対する話者検証は、最も困難で要求の高いタスクの1つである。
本稿では,a)環境騒音の有無による遠距離話者検証システムの品質向上,b)短時間発話におけるシステム品質劣化の低減という2つの目標を達成するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-14T13:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。