論文の概要: IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
- arxiv url: http://arxiv.org/abs/2504.16728v1
- Date: Wed, 23 Apr 2025 14:01:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 16:09:29.958956
- Title: IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
- Title(参考訳): IRIS:科学発見を加速するインタラクティブな研究思想システム
- Authors: Aniketh Garikaparthi, Manasi Patwardhan, Lovekesh Vig, Arman Cohan,
- Abstract要約: IRISは、研究者が大規模言語モデル(LLM)を補助する科学的概念を活用するために設計されたオープンソースのプラットフォームである。
IRISは、モンテカルロ木探索(MCTS)による適応的なテスト時間計算拡張、きめ細かいフィードバック機構、クエリベースの文献合成など、アイデアを強化する革新的な機能を備えている。
我々は様々な分野の研究者とユーザスタディを行い、システムの有効性を検証し、アイデアの充実を図っている。
- 参考スコア(独自算出の注目度): 27.218896203253987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
- Abstract(参考訳): 大規模言語モデル(LLM)の能力の急速な進歩は、重要な疑問を提起している。
この研究は重要な研究の第1段階に取り組み、新しい仮説を生み出している。
自動仮説生成に関する最近の研究は、マルチエージェントフレームワークとテスト時間計算の拡張に焦点を当てているが、いずれのアプローチも、シナジスティックなHuman-in-the-loop(HITL)アプローチを通じて、透明性とステアビリティを効果的に取り入れていない。
このギャップに対処するために、我々はIRIS: Interactive Research Ideation Systemを紹介した。
IRISは、モンテカルロ木探索(MCTS)による適応的なテスト時間計算拡張、きめ細かいフィードバック機構、クエリベースの文献合成など、アイデアを強化する革新的な機能を備えている。
思考プロセス全体を通じて、より制御と洞察を研究者に与えるために設計された。
また,多様な分野の研究者とユーザスタディを行い,システムの有効性を検証する。
私たちは、https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-Systemでコードをオープンソース化しました。
関連論文リスト
- A Vision for Auto Research with LLM Agents [47.310516109726656]
本稿では,科学研究の全ライフサイクルの自動化,コーディネート,最適化を目的とした構造化マルチエージェントフレームワークであるエージェントベースオートリサーチを紹介する。
このシステムは、文献レビュー、アイデア、方法論、実験、論文執筆、査読応答、普及など、すべての主要な研究段階にまたがる。
論文 参考訳(メタデータ) (2025-04-26T02:06:10Z) - SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、人間とAIのコラボレーションに新たな可能性をもたらしている。
我々はSciSciGPTを紹介した。SciSciGPTはオープンソースのプロトタイプAIコラボレータで、科学の科学をテストベッドとして利用し、LLMを利用した研究ツールの可能性を探る。
論文 参考訳(メタデータ) (2025-04-07T23:19:39Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT)フレームワークは、モンテカルロ木探索(MCTS)アルゴリズムと「連想記憶」と呼ばれる新しいキー情報を統合する動的メカニズムの革新的な相乗効果を導入している。
MCTSの構造的探索能力と連想記憶の適応学習能力を組み合わせることで、CoATはLLM検索空間を大幅に拡張し、多様な推論経路を探索し、その知識ベースをリアルタイムで動的に更新することを可能にする。
これらの実験により、我々のフレームワークは、精度、コヒーレンス、多様性に関する従来の推論プロセスより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-04T15:10:33Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
この研究は、多様な燃焼研究データを処理し、実験研究、シミュレーション、文献にまたがるアプローチを導入している。
開発されたアプローチは、データのプライバシと精度を最適化しながら、計算と経済の費用を最小化する。
このフレームワークは、最小限の人間の監視で、常に正確なドメイン固有の応答を提供する。
論文 参考訳(メタデータ) (2023-12-31T17:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。