論文の概要: A Survey of AI Agent Protocols
- arxiv url: http://arxiv.org/abs/2504.16736v2
- Date: Sat, 26 Apr 2025 15:16:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.075862
- Title: A Survey of AI Agent Protocols
- Title(参考訳): AIエージェントプロトコルに関する調査
- Authors: Yingxuan Yang, Huacan Chai, Yuanyi Song, Siyuan Qi, Muning Wen, Ning Li, Junwei Liao, Haoyi Hu, Jianghao Lin, Gaowei Chang, Weiwen Liu, Ying Wen, Yong Yu, Weinan Zhang,
- Abstract要約: 大きな言語モデル(LLM)エージェントが外部ツールやデータソースと通信する標準的な方法はありません。
この標準化されたプロトコルの欠如は、エージェントが協力したり、効果的にスケールするのを難しくする。
LLMエージェントの統一通信プロトコルは、これを変更できる。
- 参考スコア(独自算出の注目度): 35.431057321412354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of large language models (LLMs) has led to the widespread deployment of LLM agents across diverse industries, including customer service, content generation, data analysis, and even healthcare. However, as more LLM agents are deployed, a major issue has emerged: there is no standard way for these agents to communicate with external tools or data sources. This lack of standardized protocols makes it difficult for agents to work together or scale effectively, and it limits their ability to tackle complex, real-world tasks. A unified communication protocol for LLM agents could change this. It would allow agents and tools to interact more smoothly, encourage collaboration, and triggering the formation of collective intelligence. In this paper, we provide the first comprehensive analysis of existing agent protocols, proposing a systematic two-dimensional classification that differentiates context-oriented versus inter-agent protocols and general-purpose versus domain-specific protocols. Additionally, we conduct a comparative performance analysis of these protocols across key dimensions such as security, scalability, and latency. Finally, we explore the future landscape of agent protocols by identifying critical research directions and characteristics necessary for next-generation protocols. These characteristics include adaptability, privacy preservation, and group-based interaction, as well as trends toward layered architectures and collective intelligence infrastructures. We expect this work to serve as a practical reference for both researchers and engineers seeking to design, evaluate, or integrate robust communication infrastructures for intelligent agents.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な開発により、顧客サービス、コンテンツ生成、データ分析、医療など、さまざまな産業にLLMエージェントが広く展開されるようになった。
しかし、より多くのLLMエージェントがデプロイされるにつれて、大きな問題が浮かび上がっている。
この標準化されたプロトコルの欠如により、エージェントが協力したり、効果的にスケールすることが難しくなり、複雑な現実世界のタスクに取り組む能力が制限される。
LLMエージェントの統一通信プロトコルは、これを変更できる。
エージェントやツールがよりスムーズに対話し、協力を奨励し、集団知性の形成を誘発する。
本稿では,既存のエージェントプロトコルを包括的に解析し,コンテキスト指向プロトコルとエージェント間プロトコル,汎用プロトコルとドメイン固有プロトコルを区別する体系的な2次元分類を提案する。
さらに、セキュリティ、スケーラビリティ、レイテンシといった重要な側面にわたって、これらのプロトコルの比較パフォーマンス分析を行います。
最後に,エージェントプロトコルの今後の展望を,次世代プロトコルに必要な重要な研究方向と特徴を特定して検討する。
これらの特徴には、適応性、プライバシ保護、グループベースのインタラクション、階層アーキテクチャや集団インテリジェンスインフラストラクチャへのトレンドなどが含まれる。
この研究は、インテリジェントエージェントのための堅牢な通信基盤を設計、評価、統合しようとする研究者とエンジニアの両方にとって、実用的な参考になることを期待しています。
関連論文リスト
- From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review [1.4929298667651645]
大規模言語モデルと自律型AIエージェントを評価するベンチマークを2019年から2025年にかけて開発した。
本稿では,知識推論,数学的問題解決,コード生成とソフトウェア工学,事実的根拠と検索,ドメイン固有評価,マルチモーダルおよび具体的タスク,タスクオーケストレーション,インタラクティブアセスメントを対象とする約60のベンチマークの分類法を提案する。
我々は、材料科学、バイオメディカルリサーチ、学術思想、ソフトウェア工学、合成データ生成、数学的問題解決、地理情報システム、マルチメディア、医療、金融における自律型AIエージェントの現実的な応用を提示する。
論文 参考訳(メタデータ) (2025-04-28T11:08:22Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning [9.48183472865413]
協調型マルチエージェント強化学習(MARL)のためのスケーラブルな通信プロトコルを開発する。
本稿では,この指数的トポロジを利用して,その小径特性と小径特性を活用し,エージェント間の迅速な情報伝達を実現することを提案する。
MAgentやInfrastructure Management Planningといった大規模協調型ベンチマークの実験は、ExpoCommの優れた性能と堅牢なゼロショット転送性を示している。
論文 参考訳(メタデータ) (2025-02-27T03:15:31Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
本稿では,言語コミュニケーションによるマルチモーダルマルチエージェントシステムの協調性能を評価するための新しいベンチマークを提案する。
GPT-4oのようなプロプライエタリなモデルを含む最先端モデルの驚くべき弱点が明らかになった。
論文 参考訳(メタデータ) (2024-10-10T02:49:47Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。