論文の概要: Implementing AI Bill of Materials (AI BOM) with SPDX 3.0: A Comprehensive Guide to Creating AI and Dataset Bill of Materials
- arxiv url: http://arxiv.org/abs/2504.16743v1
- Date: Wed, 23 Apr 2025 14:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 15:58:52.612733
- Title: Implementing AI Bill of Materials (AI BOM) with SPDX 3.0: A Comprehensive Guide to Creating AI and Dataset Bill of Materials
- Title(参考訳): SPDX 3.0によるAIビル・オブ・マテリアル(AI BOM)の実装 : AIとデータセット・ビルの総合ガイド
- Authors: Karen Bennet, Gopi Krishnan Rajbahadur, Arthit Suriyawongkul, Kate Stewart,
- Abstract要約: SBOM(Software Bill of Materials)は、規制や技術分野において、ますます重要なツールになりつつある。
本稿では、AI-BOMの概念を導入し、SBOMを拡張し、アルゴリズム、データ収集方法、フレームワークとライブラリ、ライセンス情報、標準コンプライアンスのドキュメンテーションを含む。
- 参考スコア(独自算出の注目度): 5.1706418550751145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A Software Bill of Materials (SBOM) is becoming an increasingly important tool in regulatory and technical spaces to introduce more transparency and security into a project's software supply chain. Artificial intelligence (AI) projects face unique challenges beyond the security of their software, and thus require a more expansive approach to a bill of materials. In this report, we introduce the concept of an AI-BOM, expanding on the SBOM to include the documentation of algorithms, data collection methods, frameworks and libraries, licensing information, and standard compliance.
- Abstract(参考訳): SBOM(Software Bill of Materials)は、プロジェクトのソフトウェアサプライチェーンに透明性とセキュリティを導入するための規制と技術分野において、ますます重要なツールになりつつある。
人工知能(AI)プロジェクトは、ソフトウェアのセキュリティを超えた、ユニークな課題に直面している。
本稿では、AI-BOMの概念を導入し、SBOMを拡張し、アルゴリズム、データ収集方法、フレームワークとライブラリ、ライセンス情報、標準コンプライアンスのドキュメンテーションを含む。
関連論文リスト
- Compliance of AI Systems [0.0]
本稿では、EUのAI法に焦点をあてて、関連する法律に対するAIシステムのコンプライアンスを体系的に検討する。
この分析は、エッジデバイスに関連する多くの課題を強調した。
データセットのコンプライアンスの重要性は、AIシステムの信頼性、透明性、説明可能性を保証するための基盤として強調されている。
論文 参考訳(メタデータ) (2025-03-07T16:53:36Z) - Toward Neurosymbolic Program Comprehension [46.874490406174644]
我々は,既存のDL技術の強みと従来の象徴的手法を組み合わせたニューロシンボリック研究の方向性を提唱する。
第1回ニューロシンボリック・プログラム・フレームワークの確立をめざして,提案するアプローチの予備的結果を示す。
論文 参考訳(メタデータ) (2025-02-03T20:38:58Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
論文 参考訳(メタデータ) (2024-11-25T07:48:31Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
本稿は、AIに強化されたソフトウェア工学の現状の概要を提供し、対応する分類学であるAI4SEを開発する。
SEにおけるAI支援ビッグデータのビジョンは、ソフトウェア開発の文脈において両方のアプローチに固有の利点を活かすことを目的としている。
論文 参考訳(メタデータ) (2024-09-26T16:49:57Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
サイバー物理システム(CPS)は、予測保守や生産計画を含むアプリケーションに人工知能(AI)が活用できる膨大なデータセットを生成する。
AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
論文 参考訳(メタデータ) (2024-05-28T20:54:41Z) - Open-Source AI-based SE Tools: Opportunities and Challenges of Collaborative Software Learning [23.395624804517034]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)タスクの進展に役立っている。
これらのAIベースのSEモデルのコラボレーションは、高品質なデータソースの最大化に重点を置いている。
特に高品質のデータは、しばしば商業的または機密性の高い価値を持ち、オープンソースAIベースのSEプロジェクトではアクセスできない。
論文 参考訳(メタデータ) (2024-04-09T10:47:02Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Towards a Responsible AI Metrics Catalogue: A Collection of Metrics for
AI Accountability [28.67753149592534]
本研究は,包括的メトリクスカタログへの取り組みを導入することで,説明責任のギャップを埋めるものである。
我々のカタログは、手続き的整合性を支えるプロセスメトリクス、必要なツールやフレームワークを提供するリソースメトリクス、AIシステムのアウトプットを反映する製品メトリクスを記述しています。
論文 参考訳(メタデータ) (2023-11-22T04:43:16Z) - Semantic Communications for Artificial Intelligence Generated Content
(AIGC) Toward Effective Content Creation [75.73229320559996]
本稿では,AIGCとSemComの統合の概念モデルを開発する。
AIGC技術を利用した新しいフレームワークが,意味情報のためのエンコーダおよびデコーダとして提案されている。
このフレームワークは、生成されたさまざまなタイプのコンテンツ、要求される品質、活用される意味情報に適応することができる。
論文 参考訳(メタデータ) (2023-08-09T13:17:21Z) - Trust in Software Supply Chains: Blockchain-Enabled SBOM and the AIBOM
Future [28.67753149592534]
本研究では、SBOM共有のためのブロックチェーンを活用したアーキテクチャを導入し、検証可能な認証情報を活用して、選択的な開示を可能にする。
本稿では、AIシステムを含むSBOMの限界を広げ、AI Bill of Materials(AIBOM)という用語を創出する。
論文 参考訳(メタデータ) (2023-07-05T07:56:48Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - What and How of Machine Learning Transparency: Building Bespoke
Explainability Tools with Interoperable Algorithmic Components [77.87794937143511]
本稿では,データ駆動予測モデルを説明するためのハンズオントレーニング教材について紹介する。
これらのリソースは、解釈可能な表現合成、データサンプリング、説明生成の3つのコアビルディングブロックをカバーする。
論文 参考訳(メタデータ) (2022-09-08T13:33:25Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and
Communicating the Uncertainty of AI [49.64037266892634]
我々は、AIモデルの不確実性定量化のためのオープンソースのPythonツールキットUncertainty Quantification 360 (UQ360)について述べる。
このツールキットの目標は2つある: ひとつは、AIアプリケーション開発ライフサイクルにおける不確実性を定量化し、評価し、改善し、伝達する共通のプラクティスを育むとともに、合理化するための幅広い能力を提供すること、もうひとつは、信頼できるAIの他の柱とのUQの接続をさらに探求することである。
論文 参考訳(メタデータ) (2021-06-02T18:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。