論文の概要: An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning
- arxiv url: http://arxiv.org/abs/2504.16866v1
- Date: Wed, 23 Apr 2025 16:39:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 15:14:54.296494
- Title: An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning
- Title(参考訳): フェデレート・トランスファー学習による電力変換器モニタリングのための適応型MLフレームワーク
- Authors: Panagiotis Kakosimos, Alireza Nemat Saberi, Luca Peretti,
- Abstract要約: 本研究では、熱機械学習モデル(ML)をパワーコンバータに適用するための代替フレームワーク構成について検討する。
フレームワークは、3つの最先端のドメイン適応技術を適用することで、複数のクライアントによって漸進的に適応されるベースモデルから始まります。
フィールドデータによる検証は、ファインチューニングが簡単なTLアプローチを高精度に提供し、実用的な応用に適していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study explores alternative framework configurations for adapting thermal machine learning (ML) models for power converters by combining transfer learning (TL) and federated learning (FL) in a piecewise manner. This approach inherently addresses challenges such as varying operating conditions, data sharing limitations, and security implications. The framework starts with a base model that is incrementally adapted by multiple clients via adapting three state-of-the-art domain adaptation techniques: Fine-tuning, Transfer Component Analysis (TCA), and Deep Domain Adaptation (DDA). The Flower framework is employed for FL, using Federated Averaging for aggregation. Validation with field data demonstrates that fine-tuning offers a straightforward TL approach with high accuracy, making it suitable for practical applications. Benchmarking results reveal a comprehensive comparison of these methods, showcasing their respective strengths and weaknesses when applied in different scenarios. Locally hosted FL enhances performance when data aggregation is not feasible, while cloud-based FL becomes more practical with a significant increase in the number of clients, addressing scalability and connectivity challenges.
- Abstract(参考訳): 本研究では,トランスファーラーニング(TL)とフェデレートラーニング(FL)を組み合わせることで,熱機械学習(ML)モデルを電力変換器に適用するための代替フレームワーク構成について検討する。
このアプローチは本質的に、さまざまな運用条件、データ共有の制限、セキュリティへの影響といった課題に対処するものだ。
フレームワークは、ファインチューニング、トランスファーコンポーネント分析(TCA)、ディープドメイン適応(DDA)という3つの最先端ドメイン適応技術を適用することで、複数のクライアントによって漸進的に適応されるベースモデルから始まります。
FlowerフレームワークはFLに使われ、アグリゲーションにはFederated Averagingを使用している。
フィールドデータによる検証は、ファインチューニングが簡単なTLアプローチを高精度に提供し、実用的な応用に適していることを示す。
ベンチマークの結果、これらの手法を総合的に比較し、異なるシナリオに適用した場合のそれぞれの長所と短所を示す。
ローカルにホストされたFLは、データアグリゲーションが実現不可能なときにパフォーマンスを向上する一方、クラウドベースのFLは、クライアントの数が大幅に増加し、スケーラビリティと接続性の問題に対処しながら、より実用的になる。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
フェデレーテッド・ラーニング(FL)は、分散機械学習(ML)モデルをトレーニングするための最も広く採用されているコラボレーティブ・ラーニング・アプローチである。
しかし、すべてのFLタスクにおいて、大きなデータ類似性や均質性は認められているため、FLは産業環境では特に設計されていない。
本稿では,コホーティングにモデルパラメータを用いる軽量産業用コホーテッドFL (licFL) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-25T12:48:56Z) - Federated Transfer Learning with Task Personalization for Condition Monitoring in Ultrasonic Metal Welding [3.079885946230076]
本稿ではトランスファーラーニングについて述べる。
分散分散学習フレームワークでデータ機能を提供するFTLTP(Federated Task Task Architecture)。
FTL-TPフレームワークは、様々な製造アプリケーションに容易に適用できる。
論文 参考訳(メタデータ) (2024-04-20T05:31:59Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformer (ViT) と Visual Prompt Tuning (VPT) は、様々なコンピュータビジョンタスクの効率を改善して最先端のパフォーマンスを実現する。
本稿では,GFL(Generalized FL)とPFL(Personalized FL)を組み合わせた新しいアルゴリズムSGPTを提案する。
論文 参考訳(メタデータ) (2023-10-27T17:22:09Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
FL(Federated Learning)は、FLエッジクライアントの分散データとプライベートデータの恩恵を受けることができる。
異種データシナリオにおけるLoRAの重要な制約を克服するSLoRAという手法を提案する。
実験の結果,SLoRAは完全微調整に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-08-12T10:33:57Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。