Building A Secure Agentic AI Application Leveraging A2A Protocol
- URL: http://arxiv.org/abs/2504.16902v2
- Date: Fri, 02 May 2025 18:28:07 GMT
- Title: Building A Secure Agentic AI Application Leveraging A2A Protocol
- Authors: Idan Habler, Ken Huang, Vineeth Sai Narajala, Prashant Kulkarni,
- Abstract summary: We provide a comprehensive security analysis centered on the A2A protocol.<n>We apply proactive threat modeling to assess potential security issues in A2A deployments.<n>This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
Related papers
- BlockA2A: Towards Secure and Verifiable Agent-to-Agent Interoperability [5.483452240835409]
BlockA2A is a unified multi-agent trust framework for agent-to-agent interoperability.<n>It eliminates centralized trust bottlenecks, ensures message authenticity and execution integrity, and guarantees accountability across agent interactions.<n>It neutralizes attacks through real-time mechanisms, including Byzantine agent flagging, reactive execution halting, and instant permission revocation.
arXiv Detail & Related papers (2025-08-02T11:59:21Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - A Study on the MCP x A2A Framework for Enhancing Interoperability of LLM-based Autonomous Agents [0.0]
In modern AI systems, collaboration between autonomous agents and integration with external tools have become essential elements for building practical AI applications.<n>This paper provides an in-depth technical analysis and implementation methodology of the open-source Agent-to-Agent (A2A) protocol developed by Google and the Model Context Protocol (MCP) introduced by Anthropic.
arXiv Detail & Related papers (2025-06-02T15:46:16Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - A Novel Zero-Trust Identity Framework for Agentic AI: Decentralized Authentication and Fine-Grained Access Control [7.228060525494563]
This paper posits the imperative for a novel Agentic AI IAM framework.<n>We propose a comprehensive framework built upon rich, verifiable Agent Identities (IDs)<n>We also explore how Zero-Knowledge Proofs (ZKPs) enable privacy-preserving attribute disclosure and verifiable policy compliance.
arXiv Detail & Related papers (2025-05-25T20:21:55Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - From Glue-Code to Protocols: A Critical Analysis of A2A and MCP Integration for Scalable Agent Systems [0.8909482883800253]
Two open standards, Google's Agent to Agent (A2A) protocol for inter-agent communication and Anthropic's Model Context Protocol (MCP) for standardized tool access, promise to overcome the limitations of fragmented, custom integration approaches.<n>This paper argues that effectively integrating A2A and MCP presents unique, emergent challenges at their intersection.
arXiv Detail & Related papers (2025-05-06T16:40:39Z) - A Survey of AI Agent Protocols [35.431057321412354]
There is no standard way for large language models (LLMs) agents to communicate with external tools or data sources.
This lack of standardized protocols makes it difficult for agents to work together or scale effectively.
A unified communication protocol for LLM agents could change this.
arXiv Detail & Related papers (2025-04-23T14:07:26Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
We present DoomArena, a security evaluation framework for AI agents.<n>It is a plug-in framework and integrates easily into realistic agentic frameworks.<n>It is modular and decouples the development of attacks from details of the environment in which the agent is deployed.
arXiv Detail & Related papers (2025-04-18T20:36:10Z) - Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies [0.0]
The Model Context Protocol (MCP) provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time.
This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks.
arXiv Detail & Related papers (2025-04-11T15:25:58Z) - Multi-Agent Security Tax: Trading Off Security and Collaboration Capabilities in Multi-Agent Systems [1.2564343689544843]
We develop simulations of AI agents collaborating on shared objectives to study security risks and trade-offs.<n>We observe infectious malicious prompts - the multi-hop spreading of malicious instructions.<n>Our findings illustrate potential trade-off between security and collaborative efficiency in multi-agent systems.
arXiv Detail & Related papers (2025-02-26T14:00:35Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.
AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.
We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.
In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.
Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
This paper addresses the need for safety measures in AI systems that collaborate with human teams.<n>We propose and evaluate three frameworks to enhance safety protocols in AI agent systems.<n>We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems.
arXiv Detail & Related papers (2024-09-03T10:14:51Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Security of AI Agents [5.468745160706382]
We identify and describe potential vulnerabilities in AI agents in detail from a system security perspective.<n>We introduce defense mechanisms corresponding to each vulnerability with design and experiments to evaluate their viability.<n>This paper contextualizes the security issues in the current development of AI agents and delineates methods to make AI agents safer and more reliable.
arXiv Detail & Related papers (2024-06-12T23:16:45Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.