BlockA2A: Towards Secure and Verifiable Agent-to-Agent Interoperability
- URL: http://arxiv.org/abs/2508.01332v2
- Date: Tue, 05 Aug 2025 09:20:53 GMT
- Title: BlockA2A: Towards Secure and Verifiable Agent-to-Agent Interoperability
- Authors: Zhenhua Zou, Zhuotao Liu, Lepeng Zhao, Qiuyang Zhan,
- Abstract summary: BlockA2A is a unified multi-agent trust framework for agent-to-agent interoperability.<n>It eliminates centralized trust bottlenecks, ensures message authenticity and execution integrity, and guarantees accountability across agent interactions.<n>It neutralizes attacks through real-time mechanisms, including Byzantine agent flagging, reactive execution halting, and instant permission revocation.
- Score: 5.483452240835409
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid adoption of agentic AI, powered by large language models (LLMs), is transforming enterprise ecosystems with autonomous agents that execute complex workflows. Yet we observe several key security vulnerabilities in LLM-driven multi-agent systems (MASes): fragmented identity frameworks, insecure communication channels, and inadequate defenses against Byzantine agents or adversarial prompts. In this paper, we present the first systematic analysis of these emerging multi-agent risks and explain why the legacy security strategies cannot effectively address these risks. Afterwards, we propose BlockA2A, the first unified multi-agent trust framework that enables secure and verifiable and agent-to-agent interoperability. At a high level, BlockA2A adopts decentralized identifiers (DIDs) to enable fine-grained cross-domain agent authentication, blockchain-anchored ledgers to enable immutable auditability, and smart contracts to dynamically enforce context-aware access control policies. BlockA2A eliminates centralized trust bottlenecks, ensures message authenticity and execution integrity, and guarantees accountability across agent interactions. Furthermore, we propose a Defense Orchestration Engine (DOE) that actively neutralizes attacks through real-time mechanisms, including Byzantine agent flagging, reactive execution halting, and instant permission revocation. Empirical evaluations demonstrate BlockA2A's effectiveness in neutralizing prompt-based, communication-based, behavioral and systemic MAS attacks. We formalize its integration into existing MAS and showcase a practical implementation for Google's A2A protocol. Experiments confirm that BlockA2A and DOE operate with sub-second overhead, enabling scalable deployment in production LLM-based MAS environments.
Related papers
- Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
Evolving AI systems increasingly deploy multi-agent architectures where autonomous agents collaborate, share information, and delegate tasks through developing protocols.<n>One such risk is a cascading risk: a breach in one agent can cascade through the system, compromising others by exploiting inter-agent trust.<n>In an ACI attack, a malicious input or tool exploit injected at one agent leads to cascading compromises and amplified downstream effects across agents that trust its outputs.
arXiv Detail & Related papers (2025-07-23T13:51:28Z) - OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
This work explores the security issues surrounding mobile multimodal agents.<n>It attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information.<n>It also designs an automated assisted assessment scheme based on a large language model.
arXiv Detail & Related papers (2025-07-01T15:10:00Z) - From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows [1.202155693533555]
Large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval and computation.<n>Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices.<n>We introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications.
arXiv Detail & Related papers (2025-06-29T14:32:32Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - A Novel Zero-Trust Identity Framework for Agentic AI: Decentralized Authentication and Fine-Grained Access Control [7.228060525494563]
This paper posits the imperative for a novel Agentic AI IAM framework.<n>We propose a comprehensive framework built upon rich, verifiable Agent Identities (IDs)<n>We also explore how Zero-Knowledge Proofs (ZKPs) enable privacy-preserving attribute disclosure and verifiable policy compliance.
arXiv Detail & Related papers (2025-05-25T20:21:55Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - LlamaFirewall: An open source guardrail system for building secure AI agents [0.5603362829699733]
Large language models (LLMs) have evolved from simple chatbots into autonomous agents capable of performing complex tasks.<n>Given the higher stakes and the absence of deterministic solutions to mitigate these risks, there is a critical need for a real-time guardrail monitor.<n>We introduce LlamaFirewall, an open-source security focused guardrail framework.
arXiv Detail & Related papers (2025-05-06T14:34:21Z) - Building A Secure Agentic AI Application Leveraging A2A Protocol [0.0]
We provide a comprehensive security analysis centered on the A2A protocol.<n>We apply proactive threat modeling to assess potential security issues in A2A deployments.<n>This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol.
arXiv Detail & Related papers (2025-04-23T17:27:49Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
We present DoomArena, a security evaluation framework for AI agents.<n>It is a plug-in framework and integrates easily into realistic agentic frameworks.<n>It is modular and decouples the development of attacks from details of the environment in which the agent is deployed.
arXiv Detail & Related papers (2025-04-18T20:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.