論文の概要: S2Vec: Self-Supervised Geospatial Embeddings
- arxiv url: http://arxiv.org/abs/2504.16942v1
- Date: Thu, 10 Apr 2025 20:16:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.090255
- Title: S2Vec: Self-Supervised Geospatial Embeddings
- Title(参考訳): S2Vec: 自己監督型地理空間埋め込み
- Authors: Shushman Choudhury, Elad Aharoni, Chandrakumari Suvarna, Iveel Tsogsuren, Abdul Rahman Kreidieh, Chun-Ta Lu, Neha Arora,
- Abstract要約: 本稿では,埋め込み学習のための自己教師型フレームワークであるS2Vecを紹介する。
S2VecはS2ライブラリを使用して、大きな領域を個別のS2細胞に分割し、Geometryizesはセル内に構築された特徴ベクトルをイメージとして配置し、それらの画像にマスク付きオートエンコーディングを適用して特徴ベクトルをエンコードする。
我々はS2Vecを3つの大規模社会経済予測タスクで評価し、最先端の画像ベース埋め込みに対する競争性能を示した。
- 参考スコア(独自算出の注目度): 3.0700201639613827
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scalable general-purpose representations of the built environment are crucial for geospatial artificial intelligence applications. This paper introduces S2Vec, a novel self-supervised framework for learning such geospatial embeddings. S2Vec uses the S2 Geometry library to partition large areas into discrete S2 cells, rasterizes built environment feature vectors within cells as images, and applies masked autoencoding on these rasterized images to encode the feature vectors. This approach yields task-agnostic embeddings that capture local feature characteristics and broader spatial relationships. We evaluate S2Vec on three large-scale socioeconomic prediction tasks, showing its competitive performance against state-of-the-art image-based embeddings. We also explore the benefits of combining S2Vec embeddings with image-based embeddings downstream, showing that such multimodal fusion can often improve performance. Our results highlight how S2Vec can learn effective general-purpose geospatial representations and how it can complement other data modalities in geospatial artificial intelligence.
- Abstract(参考訳): 構築された環境のスケーラブルな汎用表現は地理空間人工知能アプリケーションに不可欠である。
本稿では,地理空間埋め込みを学習するための新しい自己教師型フレームワークであるS2Vecを紹介する。
S2VecはS2 Geometryライブラリを使用して、大きな領域を独立したS2細胞に分割し、構築された環境特徴ベクトルを画像として画像としてラスタライズし、これらのラスタライズされたイメージにマスク付きオートエンコーディングを適用して特徴ベクトルをエンコードする。
このアプローチは、局所的な特徴とより広い空間的関係をキャプチャするタスク非依存の埋め込みをもたらす。
我々はS2Vecを3つの大規模社会経済予測タスクで評価し、最先端の画像ベース埋め込みに対する競争性能を示した。
また、S2Vec埋め込みと画像ベースの埋め込みを下流に組み込むことの利点についても検討し、そのようなマルチモーダル融合が性能を向上できることを示す。
この結果は,S2Vecが汎用地理空間表現を効果的に学習し,地理空間人工知能における他のデータモダリティを補完する方法を強調した。
関連論文リスト
- The S2 Hierarchical Discrete Global Grid as a Nexus for Data Representation, Integration, and Querying Across Geospatial Knowledge Graphs [4.358099505067763]
本稿では,KnowWhereGraphにおけるGoogleのS2幾何の実装について概説する。
最終的にこの研究は、スケーラブルなGeoKGを構築するためのDGGSフレームワーク、特にS2の可能性を示している。
論文 参考訳(メタデータ) (2024-10-18T18:30:05Z) - S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images [10.579474650543471]
本研究ではS2RC-GCNという新しい空間スペクトル信頼性コントラストグラフ畳み込み分類フレームワークを提案する。
具体的には、1Dエンコーダと2Dエンコーダによって抽出されたスペクトルと空間の特徴を融合させ、2Dエンコーダは重要な情報を自動抽出するアテンションモデルを含む。
次に、融合した高次特徴を活用してグラフを構築し、結果のグラフをGCNに供給し、より効率的なグラフ表現を決定する。
論文 参考訳(メタデータ) (2024-04-01T07:17:02Z) - Point Transformer with Federated Learning for Predicting Breast Cancer
HER2 Status from Hematoxylin and Eosin-Stained Whole Slide Images [5.338163861405807]
HE-stained WSIs を用いた多地点 HER2 状態予測のためのフェデレート学習を用いた点変換器を提案する。
提案手法は,2687個のWSIを持つ4つのサイトにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-11T15:41:05Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
クロスビュージオローカライゼーションは、参照ジオタグ付き空中画像データベースとマッチングすることで、クエリーグラウンド画像の位置を推定することを目的としている。
最近の研究は、クロスビューなジオローカライゼーションベンチマークにおいて顕著な進歩を遂げている。
しかし、既存の手法は依然としてクロスエリアベンチマークのパフォーマンスの低下に悩まされている。
論文 参考訳(メタデータ) (2022-12-08T04:54:01Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Low-Rank Subspaces in GANs [101.48350547067628]
この研究は、GAN生成をより正確に制御できる低ランクな部分空間を導入している。
LowRankGAN は属性多様体の低次元表現を見つけることができる。
さまざまなデータセットでトレーニングされた最先端のGANモデル(StyleGAN2やBigGANなど)の実験は、私たちのLowRankGANの有効性を示しています。
論文 参考訳(メタデータ) (2021-06-08T16:16:32Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Context-self contrastive pretraining for crop type semantic segmentation [39.81074867563505]
提案したContext-Self Contrastive Loss (CSCL)は、セマンティックバウンダリをポップアップさせる埋め込み空間を学習する。
衛星画像時系列(SITS)からの作物型セマンティックセマンティックセグメンテーションでは,サテライト境界における性能が重要なボトルネックとなる。
より粒度の高い作物のクラスを得るための超解像における意味的セグメンテーションのプロセスを提案する。
論文 参考訳(メタデータ) (2021-04-09T11:29:44Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Multi-Scale Representation Learning for Spatial Feature Distributions
using Grid Cells [11.071527762096053]
本研究では,位置の絶対位置と空間的関係を符号化するスペース2Vecという表現学習モデルを提案する。
その結果、Space2Vecはマルチスケール表現のため、確立されたMLアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-16T04:22:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。