論文の概要: The S2 Hierarchical Discrete Global Grid as a Nexus for Data Representation, Integration, and Querying Across Geospatial Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2410.14808v1
- Date: Fri, 18 Oct 2024 18:30:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:20.076069
- Title: The S2 Hierarchical Discrete Global Grid as a Nexus for Data Representation, Integration, and Querying Across Geospatial Knowledge Graphs
- Title(参考訳): 地理空間知識グラフ全体にわたるデータ表現・統合・クエリのためのNexusとしてのS2階層離散グローバルグリッド
- Authors: Shirly Stephen, Mitchell Faulk, Krzysztof Janowicz, Colby Fisher, Thomas Thelen, Rui Zhu, Pascal Hitzler, Cogan Shimizu, Kitty Currier, Mark Schildhauer, Dean Rehberger, Zhangyu Wang, Antrea Christou,
- Abstract要約: 本稿では,KnowWhereGraphにおけるGoogleのS2幾何の実装について概説する。
最終的にこの研究は、スケーラブルなGeoKGを構築するためのDGGSフレームワーク、特にS2の可能性を示している。
- 参考スコア(独自算出の注目度): 4.358099505067763
- License:
- Abstract: Geospatial Knowledge Graphs (GeoKGs) have become integral to the growing field of Geospatial Artificial Intelligence. Initiatives like the U.S. National Science Foundation's Open Knowledge Network program aim to create an ecosystem of nation-scale, cross-disciplinary GeoKGs that provide AI-ready geospatial data aligned with FAIR principles. However, building this infrastructure presents key challenges, including 1) managing large volumes of data, 2) the computational complexity of discovering topological relations via SPARQL, and 3) conflating multi-scale raster and vector data. Discrete Global Grid Systems (DGGS) help tackle these issues by offering efficient data integration and representation strategies. The KnowWhereGraph utilizes Google's S2 Geometry -- a DGGS framework -- to enable efficient multi-source data processing, qualitative spatial querying, and cross-graph integration. This paper outlines the implementation of S2 within KnowWhereGraph, emphasizing its role in topologically enriching and semantically compressing data. Ultimately, this work demonstrates the potential of DGGS frameworks, particularly S2, for building scalable GeoKGs.
- Abstract(参考訳): Geospatial Knowledge Graphs (GeoKGs) は、Geospatial Artificial Intelligence(地理空間知識グラフ)の分野に不可欠なものとなっている。
米国国立科学財団のOpen Knowledge Networkプログラムのようなイニシアチブは、FAIR原則に沿ったAI対応の地理空間データを提供する、全国規模のクロスディシプリタリーなGeoKGのエコシステムを構築することを目的としている。
しかし、このインフラを構築することは、重要な課題である。
1)大量のデータを管理すること。
2) SPARQLによるトポロジカルな関係の発見の計算複雑性
3) マルチスケールラスタとベクトルデータの融合。
離散グローバルグリッドシステム(DGGS)は、効率的なデータ統合と表現戦略を提供することで、これらの問題を解決するのに役立ちます。
KnowWhereGraphでは、DGGSフレームワークであるGoogleのS2 Geometryを使用して、効率的なマルチソースデータ処理、定性的空間クエリ、クロスグラフ統合を実現している。
本稿では、KnowWhereGraphにおけるS2の実装について概説し、トポロジ的にリッチでセマンティックなデータ圧縮におけるS2の役割を強調した。
最終的にこの研究は、スケーラブルなGeoKGを構築するためのDGGSフレームワーク、特にS2の可能性を示している。
関連論文リスト
- Grid-Based Projection of Spatial Data into Knowledge Graphs [1.3723120574076129]
実世界の実体の空間的特性を知識グラフにエンコードできることを示す。
本稿では,各街路セグメントを個別に把握する従来の手法から,知識グラフにおける街路ネットワークを表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T17:35:41Z) - Learning Geospatial Region Embedding with Heterogeneous Graph [16.864563545518124]
様々な下流タスクに対する包括的領域埋め込みを学習するための有効なヘテロジニアスグラフ構造であるGeoHGを提案する。
具体的には、地理的領域分割とPOI(point-of-interest)統合による衛星画像表現学習を、表現的地域内特徴のために調整する。
GeoHGは情報的空間依存性と社会環境特性を強力なヘテロジニアスグラフに統合し、高次の地域間関係の明示的なモデリングを促進する。
論文 参考訳(メタデータ) (2024-05-23T03:19:02Z) - Geospatial Knowledge Graphs [3.0638648756719222]
地理空間知識グラフは地理空間情報の表現と推論のための新しいパラダイムとして登場した。
このエントリではまず、知識グラフにおける重要な概念と、関連する標準化とツールを紹介します。
その後、地理・環境科学における知識グラフの応用に踏み切った。
論文 参考訳(メタデータ) (2024-05-13T11:45:22Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGPT: Understanding and Processing Geospatial Tasks through An
Autonomous GPT [6.618846295332767]
GISの意思決定者は、空間的タスクを解決するために、一連の空間的アルゴリズムと演算を組み合わせる必要がある。
我々は,地理空間データ収集,処理,解析を自律的に行うことのできるGeoGPTと呼ばれる新しいフレームワークを開発した。
論文 参考訳(メタデータ) (2023-07-16T03:03:59Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
大規模言語モデル(LLM)は自然言語処理の一般分野において大きな成功を収めている。
我々は、地球科学におけるLLM研究をさらに促進するために開発された一連の資源とともに、地球科学における最初のLLMであるK2を提示する。
論文 参考訳(メタデータ) (2023-06-08T09:29:05Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - Narrative Cartography with Knowledge Graphs [10.715484138543069]
ナレッジグラフ(KG)を用いたナラティブカルトグラフィーの考え方を提案する。
データ取得と統合の課題に取り組むため、我々はKGベースのGeoEnrichmentツールボックスセットを開発した。
このツールの助けを借りて、KGから取得したデータはGIS形式で直接実体化される。
論文 参考訳(メタデータ) (2021-12-02T04:01:17Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。