論文の概要: Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
- arxiv url: http://arxiv.org/abs/2504.16972v1
- Date: Wed, 23 Apr 2025 15:19:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.107125
- Title: Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
- Title(参考訳): 自動エンコーダと視覚変換器を用いた教師なし時系列信号解析:アーキテクチャと応用のレビュー
- Authors: Hossein Ahmadi, Sajjad Emdadi Mahdimahalleh, Arman Farahat, Banafsheh Saffari,
- Abstract要約: ラベルなしの時系列データは教師なし学習の進歩を促している。
本稿では、教師なし信号解析におけるオートエンコーダと視覚変換器の適用の最近の進歩を概観する。
これらのモデルが特徴抽出、異常検出、様々な信号タイプにまたがる分類を可能にする方法について検討する。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
- Abstract(参考訳): 無線通信、レーダー、バイオメディカルエンジニアリング、IoT(Internet of Things)といった分野におけるラベルなしの時系列データの急速な成長は、教師なし学習の進歩を促している。
本稿では, 教師なし信号解析にオートエンコーダとビジョントランスフォーマーを適用し, アーキテクチャ, 応用, 新興トレンドに着目した最近の進歩を概観する。
これらのモデルが、心電図、レーダー波形、IoTセンサーデータなど、さまざまな信号タイプにまたがる特徴抽出、異常検出、分類を可能にする方法について検討する。
このレビューでは、ハイブリッドアーキテクチャと自己教師型学習の強みを強調し、解釈可能性、スケーラビリティ、ドメインの一般化における課題を特定している。
方法論の革新と実践的応用をブリッジすることで、この研究は信号インテリジェンスのための堅牢で適応的なモデルを開発するためのロードマップを提供する。
関連論文リスト
- A Survey on Wi-Fi Sensing Generalizability: Taxonomy, Techniques, Datasets, and Future Research Prospects [12.268939893726293]
本稿では,Wi-Fiセンサの一般化に関する200以上の研究を概観する。
我々は、環境変動の悪影響を軽減するために使用される最先端技術を分析した。
マルチモーダルアプローチや大規模言語モデルの統合など,新たな研究方向性について論じる。
論文 参考訳(メタデータ) (2025-03-11T03:18:20Z) - Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio [0.0]
機械学習と生成モデリングの最近の進歩は、知覚経験の再構築における脳波の応用を触媒している。
本稿では,脳波から出力までの研究を体系的にレビューし,最先端のジェネレーティブ手法,評価指標,データ課題に焦点をあてる。
論文 参考訳(メタデータ) (2024-12-28T03:50:56Z) - PCA-Featured Transformer for Jamming Detection in 5G UAV Networks [0.5999777817331317]
無人航空機(UAV)は、ネットワーク機能を損なう可能性のある攻撃を妨害することによる重大なセキュリティリスクに直面している。
従来の検出方法は、動作を動的に変更するAI駆動のジャミングに直面すると、しばしば不足する。
無線セキュリティ向上のための特徴表現を洗練するための新しいU字型トランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:13:04Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
多変量時系列データにおける異常検出のためのアテンションベースニューラルネットワークフレームワーク(CAN)を提案する。
センサ間の関係と時間的依存関係をキャプチャするために、グローバルローカルグラフに基づく畳み込みニューラルネットワークを時間的自己認識モジュールに統合する。
論文 参考訳(メタデータ) (2023-06-12T13:42:56Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - Roadmap on Signal Processing for Next Generation Measurement Systems [0.222020259427608]
人工知能と機械学習の最近の進歩は、研究の注目をインテリジェントでデータ駆動の信号処理へとシフトさせている。
このロードマップは、次世代計測システムに向けた今後の課題と研究の機会を強調するために、最先端の手法と応用について批判的な概要を提示する。
基礎研究から工業研究まで幅広い分野をカバーし、研究分野ごとの現在と将来の発展の傾向と影響を反映した簡潔なテーマのセクションで組織されている。
論文 参考訳(メタデータ) (2021-11-03T19:39:34Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
本研究は,グラフ構造とグラフ畳み込みを自動的に学習することにより,多変量時系列異常検出のための新しいフレームワークGTAを提案する。
また,グラフノード間の異常情報フローをモデル化するために,影響伝播畳み込みという新しいグラフ畳み込みを考案した。
4つの公開異常検出ベンチマークの実験は、我々のアプローチが他の最先端技術よりも優れていることをさらに証明している。
論文 参考訳(メタデータ) (2021-04-08T01:45:28Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Graph signal processing for machine learning: A review and new
perspectives [57.285378618394624]
本稿では,GSPの概念とツール,例えばグラフフィルタや変換による新しい機械学習アルゴリズム開発への重要な貢献について概説する。
本稿では,データ構造とリレーショナル事前の活用,データと計算効率の向上,モデル解釈可能性の向上について論じる。
我々は,応用数学と信号処理の橋渡しとなるGSP技術と,他方の機械学習とネットワーク科学の橋渡しとなる新たな視点を提供する。
論文 参考訳(メタデータ) (2020-07-31T13:21:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。