Antenna Near-Field Reconstruction from Far-Field Data Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2504.17065v1
- Date: Wed, 23 Apr 2025 19:23:37 GMT
- Title: Antenna Near-Field Reconstruction from Far-Field Data Using Convolutional Neural Networks
- Authors: Sahar Bagherkhani, Jackson Christopher Earls, Franco De Flaviis, Pierre Baldi,
- Abstract summary: This paper presents a deep learning-based approach for Far-Field to Near-Field (FF-NF) transformation using Convolutional Neural Networks (CNNs)<n>CNNs are trained on paired far-field and near-field data and evaluated using mean squared error (MSE)<n>Visual comparisons between the predicted and true near-field distributions demonstrate the model's effectiveness in capturing complex electromagnetic field behavior.
- Score: 4.974500659156055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electromagnetic field reconstruction is crucial in many applications, including antenna diagnostics, electromagnetic interference analysis, and system modeling. This paper presents a deep learning-based approach for Far-Field to Near-Field (FF-NF) transformation using Convolutional Neural Networks (CNNs). The goal is to reconstruct near-field distributions from the far-field data of an antenna without relying on explicit analytical transformations. The CNNs are trained on paired far-field and near-field data and evaluated using mean squared error (MSE). The best model achieves a training error of 0.0199 and a test error of 0.3898. Moreover, visual comparisons between the predicted and true near-field distributions demonstrate the model's effectiveness in capturing complex electromagnetic field behavior, highlighting the potential of deep learning in electromagnetic field reconstruction.
Related papers
- Graph-CNNs for RF Imaging: Learning the Electric Field Integral Equations [20.07924835384647]
We propose a Deep Neural Network (DNN) architecture to learn the corresponding inverse model.<n>A graph-attention backbone allows for the system geometry to be passed to the DNN, where residual convolutional layers extract features about the objects.<n>Our evaluations on two synthetic data sets of different characteristics showcase the performance gains of thee proposed advanced architecture.
arXiv Detail & Related papers (2025-03-18T17:16:40Z) - HARDCORE: H-field and power loss estimation for arbitrary waveforms with
residual, dilated convolutional neural networks in ferrite cores [1.3437002403398262]
MagNet Challenge 2023 calls upon competitors to develop data-driven models for material-specific, waveform-agnostic estimation of steady-state power losses in toroidal ferrite cores.
HardCORE approach shows that a residual convolutional neural network with physics-informed extensions can serve this task efficiently when trained on observational data beforehand.
A model is trained from scratch for each material, while the topology remains the same.
arXiv Detail & Related papers (2024-01-21T13:24:41Z) - ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field [52.09661042881063]
We propose an approach that models the bfprovenance for each point -- i.e., the locations where it is likely visible -- of NeRFs as a text field.
We show that modeling per-point provenance during the NeRF optimization enriches the model with information on leading to improvements in novel view synthesis and uncertainty estimation.
arXiv Detail & Related papers (2024-01-16T06:19:18Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - Spherical convolutional neural networks can improve brain microstructure
estimation from diffusion MRI data [0.35998666903987897]
Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue.
Estimate clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve.
We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data.
arXiv Detail & Related papers (2022-11-17T20:52:00Z) - Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO
via Fixed Point Networks [15.498866529344275]
Terahertz ultra-massive multiple-input multiple-output (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless systems.
We develop an efficient deep learning based channel estimator with adaptive complexity and linear convergence guarantee.
A major algorithmic innovation involves applying fixed point to compute the channel estimate while modeling neural networks with arbitrary depth and adapting to the hybrid-field channel conditions.
arXiv Detail & Related papers (2022-05-10T14:57:56Z) - Magnetic Field Prediction Using Generative Adversarial Networks [0.0]
We predict magnetic field values at a random point in space by using a generative adversarial network (GAN) structure.
The deep learning (DL) architecture consists of two neural networks: a generator, which predicts missing field values of a given magnetic field, and a critic, which is trained to calculate the statistical distance between real and generated magnetic field distributions.
Our trained generator has learned to predict the missing field values with a median reconstruction test error of 5.14%, when a single coherent region of field points is missing, and 5.86%, when only a few point measurements in space are available.
arXiv Detail & Related papers (2022-03-14T12:31:54Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.