Solitons in arbitrary dimensions stabilized by photon-mediated interactions
- URL: http://arxiv.org/abs/2504.17078v1
- Date: Wed, 23 Apr 2025 19:56:28 GMT
- Title: Solitons in arbitrary dimensions stabilized by photon-mediated interactions
- Authors: Haoqing Zhang, Anjun Chu, Chengyi Luo, James K. Thompson, Ana Maria Rey,
- Abstract summary: We propose a scheme to generate solitons in arbitrary dimensions, in a matter-wave interferometer, without the need of quantum degeneracy.<n>For detection in thermal gases, we propose an interferometric probing scheme instead of traditional time-of-flight imaging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme to generate solitons in arbitrary dimensions, in a matter-wave interferometer, without the need of quantum degeneracy. In our setting, solitons emerge by balancing the single-particle dispersion with engineered cavity-mediated exchange interactions between two wave packets, which, at the appropriate conditions, remain bound to each other and dispersion-free. For detection in thermal gases, we propose an interferometric probing scheme instead of traditional time-of-flight imaging.
Related papers
- Photon-mediated interactions by Floquet photonic lattices [42.19261924828342]
We show the emergence of tunable-range emitter's interactions mediated by bound states absent in static photonic lattices.<n>This work sheds light on the interplay between non-equilibrium photonics and quantum optics and can serve as the basis for analyzing Floquet photonic lattices in higher dimensions.
arXiv Detail & Related papers (2025-06-12T07:41:27Z) - Correlated emission lasing in a single quantum dot embedded inside a bimodal photonic crystal cavity [0.0]
We investigate the phenomenon of correlated emission lasing in a coherently driven single quantum dot coupled to a bimodal photonic crystal cavity.
To account for exciton-phonon interactions, we incorporate a non-perturbative approach through a polaron transformed master equation.
arXiv Detail & Related papers (2024-11-18T17:15:54Z) - On-chip generation of hybrid polarization-frequency entangled biphoton
states [0.0]
Chip-integrated semiconductor source combines polarization and frequency entanglement.
State entanglement is quantified by a combined measurement of the joint spectrum and Hong-ou-Mandel interference of the biphotons.
arXiv Detail & Related papers (2022-07-22T08:40:39Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Non-linear Bragg trap interferometer [0.0]
We propose a scheme for trapped atom interferometry using an interacting Bose-Einstein condensate.
The condensate is controlled and spatially split in two confined external momentum modes through a series Bragg pulses.
arXiv Detail & Related papers (2020-12-10T16:27:42Z) - Orbital angular momentum interference of trapped matter waves [0.0]
We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in a ring trap.
We argue that orbital angular momentum interferometry offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates.
arXiv Detail & Related papers (2020-06-08T11:44:01Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - On the low-energy description for tunnel-coupled one-dimensional Bose
gases [0.0]
We consider a model of two tunnel-coupled one-dimensional Bose gases with hard-wall boundary conditions.
We focus on the role played by spatial inhomogeneities in the initial state in a quantum quench setup.
arXiv Detail & Related papers (2020-03-17T18:05:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.