論文の概要: A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
- arxiv url: http://arxiv.org/abs/2504.17200v1
- Date: Thu, 24 Apr 2025 02:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.225447
- Title: A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
- Title(参考訳): RAG-based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
- Authors: Yangxinyu Xie, Bowen Jiang, Tanwi Mallick, Joshua David Bergerson, John K. Hutchison, Duane R. Verner, Jordan Branham, M. Ross Alexander, Robert B. Ross, Yan Feng, Leslie-Anne Levy, Weijie Su, Camillo J. Taylor,
- Abstract要約: 大規模言語モデル(LLM)は、人工知能と機械学習のフロンティアにおける変換能力である。
本稿では,自然災害や極端気象イベントの文脈における解析と意思決定を支援するために,RAGに基づく多エージェントLCMシステムを提案する。
- 参考スコア(独自算出の注目度): 12.898802729846857
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work we propose a retrieval-augmented generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire hazards. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating natural hazard and extreme weather projection data, observational datasets, and scientific literature through an RAG framework, the system ensures both the accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support.
- Abstract(参考訳): 大規模言語モデル(LLMs)は、人工知能と機械学習のフロンティアにおける変革的な能力であり、極端な自然災害イベントのような社会的課題に対処する上で、意思決定者を支援することができる。
一般化されたモデルとして、LLMは特に専門知識を必要とする分野において、文脈固有の情報の提供に苦慮することが多い。
本研究では,自然災害や極端気象イベントの文脈における分析と意思決定を支援するために,RAGに基づくマルチエージェントLCMシステムを提案する。
概念実証として,山火事の危険性に着目した専門システムであるWildfireGPTを紹介する。
このアーキテクチャでは、ユーザ中心のマルチエージェント設計を採用して、さまざまなステークホルダグループに対して、適切なリスク洞察を提供する。
自然災害と極度の気象予測データ、観測データセット、科学文献をRAGフレームワークを通じて統合することにより、システムは提供した情報の正確性と文脈的関連性の両方を保証する。
専門家主導のケーススタディ10件による評価は、WildfireGPTが既存のLCMベースの意思決定支援ソリューションを著しく上回っていることを示している。
関連論文リスト
- Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild [11.058848731627233]
大規模言語モデル (LLM) には高度な情報検索システムがある。
LLMは、しばしば内部記憶と検索された外部情報の間の知識の衝突に直面している。
スウィンVIBは,変分情報ボトルネックモデルのパイプラインを,検索した情報の適応的拡張に統合する新しいフレームワークである。
論文 参考訳(メタデータ) (2025-04-17T14:40:31Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Retrieval Augmented Generation (RAG) を備えたマルチモーダル大言語モデル(MLLM)
RAGはクエリ関連外部知識の応答を基盤としてMLLMを強化する。
この依存は、知識中毒攻撃(英語版)という、危険だが未発見の安全リスクを生じさせる。
本稿では,2つの攻撃戦略を持つ新しい知識中毒攻撃フレームワークMM-PoisonRAGを提案する。
論文 参考訳(メタデータ) (2025-02-25T04:23:59Z) - PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation [16.081923602156337]
sPecIalized KnowledgEとRationale Augmentation Generation(PIKE-RAG)を紹介する。
専門知識を抽出し,理解し,適用することに注力するとともに,LCMを正確な応答に向けて漸進的に操るコヒーレントな合理性を構築した。
この戦略的なアプローチは、産業アプリケーションの進化する要求を満たすために調整されたRAGシステムの段階的開発と強化のためのロードマップを提供する。
論文 参考訳(メタデータ) (2025-01-20T15:39:39Z) - Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases [11.101624331624933]
本稿では,RAGシステムにプライベート知識ベースを漏洩させるブラックボックス攻撃を提案する。
関連性に基づくメカニズムとアタッカーサイドのオープンソース LLM は、(隠された)知識ベースの大部分をリークする効果的なクエリの生成を好んでいる。
論文 参考訳(メタデータ) (2024-12-24T09:03:57Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Quantifying Risk Propensities of Large Language Models: Ethical Focus and Bias Detection through Role-Play [0.43512163406552007]
大きな言語モデル(LLM)がより普及するにつれて、その安全性、倫理、潜在的なバイアスに対する懸念が高まっている。
本研究は,認知科学からLLMまで,Domain-Specific Risk-Taking(DOSPERT)尺度を革新的に適用する。
本研究では,LLMの倫理的リスク態度を深く評価するために,倫理的意思決定リスク態度尺度(EDRAS)を提案する。
論文 参考訳(メタデータ) (2024-10-26T15:55:21Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - WildfireGPT: Tailored Large Language Model for Wildfire Analysis [12.898802729846857]
WildfireGPTは、ユーザクエリを、山火事のリスクに関する実行可能な洞察に変換するために設計されたプロトタイプエージェントである。
我々は、WildfireGPTに気候予測や科学文献などの追加のコンテキストを提供することで、その情報が現在、関連性、科学的に正確であることを保証する。
これによってWildfireGPTは,さまざまなエンドユーザをサポートするために,山火事のリスクに関する詳細なユーザ特有の洞察を提供する上で,効果的なツールになります。
論文 参考訳(メタデータ) (2024-02-12T18:41:55Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。