Prototype-enhanced prediction in graph neural networks for climate applications
- URL: http://arxiv.org/abs/2504.17492v1
- Date: Thu, 24 Apr 2025 12:34:23 GMT
- Title: Prototype-enhanced prediction in graph neural networks for climate applications
- Authors: Nawid Keshtmand, Elena Fillola, Jeffrey Nicholas Clark, Raul Santos-Rodriguez, Matthew Rigby,
- Abstract summary: Data-driven emulators are increasingly being used to learn and emulate physics-based simulations.<n>We present a structured way to improve the quality of these high-dimensional emulated outputs, through the use of prototypes.<n>We demonstrate our approach to emulate atmospheric dispersion, key for greenhouse gas emissions monitoring, by comparing a baseline model to models trained using prototypes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven emulators are increasingly being used to learn and emulate physics-based simulations, reducing computational expense and run time. Here, we present a structured way to improve the quality of these high-dimensional emulated outputs, through the use of prototypes: an approximation of the emulator's output passed as an input, which informs the model and leads to better predictions. We demonstrate our approach to emulate atmospheric dispersion, key for greenhouse gas emissions monitoring, by comparing a baseline model to models trained using prototypes as an additional input. The prototype models achieve better performance, even with few prototypes and even if they are chosen at random, but we show that choosing the prototypes through data-driven methods (k-means) can lead to almost 10\% increased performance in some metrics.
Related papers
- Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing [37.80005110808392]
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process.<n>The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests.<n>The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data.
arXiv Detail & Related papers (2025-03-31T14:15:00Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
We pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions.
Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis.
arXiv Detail & Related papers (2023-10-25T03:40:50Z) - Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes [0.0]
Mesh-based numerical solvers are an important part in many design tool chains.
Machine Learning based surrogate models are fast in predicting approximate solutions but often lack accuracy.
This paper scales a state-of-the-art surrogate model from the domain of graph-based machine learning to industry-relevant mesh sizes.
arXiv Detail & Related papers (2023-07-25T15:49:25Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Evaluating generative models in high energy physics [7.545095780512178]
We present the first systematic review and investigation into evaluation metrics and their sensitivity to failure modes of generative models.
We propose two new metrics, the Fr'echet and kernel physics distances (FPD and KPD, respectively), and perform a variety of experiments measuring their performance.
We demonstrate the efficacy of these proposed metrics in evaluating and comparing a novel attention-based generative adversarial particle transformer to the state-of-the-art message-passing generative adversarial network jet simulation model.
arXiv Detail & Related papers (2022-11-18T15:36:28Z) - Fast emulation of density functional theory simulations using
approximate Gaussian processes [0.6445605125467573]
A second statistical model that predicts the simulation output can be used in lieu of the full simulation during model fitting.
We use the emulators to calibrate, in a Bayesian manner, the density functional theory (DFT) model parameters using observed data.
The utility of these DFT models is to make predictions, based on observed data, about the properties of experimentally unobserved nuclides.
arXiv Detail & Related papers (2022-08-24T05:09:36Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
We propose a novel modification of the self-supervised training algorithm SwAV that adds the ability to adapt to single test samples.
We show the success of our method on the common benchmark dataset CIFAR10-C.
arXiv Detail & Related papers (2022-05-18T05:43:06Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Using Machine Learning to Emulate Agent-Based Simulations [0.0]
We evaluate the performance of multiple machine-learning methods as statistical emulators for use in the analysis of agent-based models (ABMs)
We propose that agent-based modelling would benefit from using machine-learning methods for emulation, as this can facilitate more robust sensitivity analyses for the models.
arXiv Detail & Related papers (2020-05-05T11:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.