Optimized Cloud Resource Allocation Using Genetic Algorithms for Energy Efficiency and QoS Assurance
- URL: http://arxiv.org/abs/2504.17675v1
- Date: Thu, 24 Apr 2025 15:45:40 GMT
- Title: Optimized Cloud Resource Allocation Using Genetic Algorithms for Energy Efficiency and QoS Assurance
- Authors: Caroline Panggabean, Devaraj Verma C, Bhagyashree Gogoi, Ranju Limbu, Rhythm Sarker,
- Abstract summary: This paper presents a Genetic Algorithm (GA)-based approach for Virtual Machine placement and consolidation.<n>The proposed method dynamically adjusts VM allocation based on real-time workload variations.<n> Experimental results show notable reductions in energy consumption, VM migrations, SLA violation rates, and execution time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud computing environments demand dynamic and efficient resource management to ensure optimal performance, reduced energy consumption, and adherence to Service Level Agreements (SLAs). This paper presents a Genetic Algorithm (GA)-based approach for Virtual Machine (VM) placement and consolidation, aiming to minimize power usage while maintaining QoS constraints. The proposed method dynamically adjusts VM allocation based on real-time workload variations, outperforming traditional heuristics such as First Fit Decreasing (FFD) and Best Fit Decreasing (BFD). Experimental results show notable reductions in energy consumption, VM migrations, SLA violation rates, and execution time. A correlation heatmap further illustrates strong relationships among these key performance indicators, confirming the effectiveness of our approach in optimizing cloud resource utilization.
Related papers
- Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.<n>This work explores the optimization of network resources for ML-based UAV CM frameworks.<n>By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Dynamic Scheduling Strategies for Resource Optimization in Computing Environments [0.29008108937701327]
This paper proposes a container scheduling method based on multi-objective optimization, which aims to balance key performance indicators such as resource utilization, load balancing and task completion efficiency.<n>The experimental results show that compared with traditional static rule algorithms and efficiency algorithms, the optimized scheduling scheme shows significant advantages in resource utilization, load balancing and burst task completion.
arXiv Detail & Related papers (2024-12-23T05:43:17Z) - An Energy-Based Self-Adaptive Learning Rate for Stochastic Gradient Descent: Enhancing Unconstrained Optimization with VAV method [9.298950359150092]
This paper introduces a novel energy-based self-adjustable learning rate optimization method designed for unconstrained optimization problems.
It incorporates an auxiliary variable $r to facilitate efficient energy approximation without backtracking while adhering to the unconditional energy dissipation law. Notably, VAV demonstrates superior stability with larger learning rates and achieves faster convergence in the early stage of the training process.
arXiv Detail & Related papers (2024-11-10T19:39:40Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - Automated Computational Energy Minimization of ML Algorithms using Constrained Bayesian Optimization [1.2891210250935148]
We evaluate Constrained Bayesian Optimization (CBO) with the primary objective of minimizing energy consumption.
We demonstrate that CBO lower energy consumption without compromising the predictive performance of ML models.
arXiv Detail & Related papers (2024-07-08T09:49:38Z) - Distributed Management of Fluctuating Energy Resources in Dynamic Networked Systems [3.716849174391564]
We study the energy-sharing problem in a system consisting of several DERs.
We model this problem as a bandit convex optimization problem with constraints that correspond to each node's limitations for energy production.
We propose distributed decision-making policies to solve the formulated problem, where we utilize the notion of dynamic regret as the performance metric.
arXiv Detail & Related papers (2024-05-29T11:54:11Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.