Causal-Aware Intelligent QoE Optimization for VR Interaction with Adaptive Keyframe Extraction
- URL: http://arxiv.org/abs/2506.19890v1
- Date: Tue, 24 Jun 2025 07:32:34 GMT
- Title: Causal-Aware Intelligent QoE Optimization for VR Interaction with Adaptive Keyframe Extraction
- Authors: Ziru Zhang, Jiadong Yu, Danny H. K. Tsang,
- Abstract summary: This paper proposes an intelligent framework to maximize quality of experience (QoE) in VR games.<n>It integrates adaptive extraction with causal-aware reinforcement learning (RL)<n> Experiments show that our framework significantly reduces interactive latency, enhances QoE, and maintains fairness.
- Score: 6.2819120598047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimization of quality of experience (QoE) in multi-user virtual reality (VR) interactions demands a delicate balance between ultra-low latency, high-fidelity motion synchronization, and equitable resource allocation. While adaptive keyframe extraction mitigates transmission overhead, existing approaches often overlook the causal relationships among allocated bandwidth, CPU frequency, and user perception, limiting QoE gains. This paper proposes an intelligent framework to maximize QoE by integrating adaptive keyframe extraction with causal-aware reinforcement learning (RL). First, a novel QoE metric is formulated using the Weber-Fechner Law, combining perceptual sensitivity, attention-driven priorities, and motion reconstruction accuracy. The QoE optimization problem is then modeled as a mixed integer programming (MIP) task, jointly optimizing keyframe ratios, bandwidth, and computational resources under horizon-fairness constraints. We propose Partial State Causal Deep Deterministic Policy Gradient (PS-CDDPG), which integrates the Deep Deterministic Policy Gradient (DDPG) method with causal influence detection. By leveraging causal information regarding how QoE is influenced and determined by various actions, we explore actions guided by weights calculated from causal inference (CI), which in turn improves training efficiency. Experiments conducted with the CMU Motion Capture Database demonstrate that our framework significantly reduces interactive latency, enhances QoE, and maintains fairness, achieving superior performance compared to benchmark methods.
Related papers
- The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.<n>We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
Mean Field Control Games (MFCGs) provide a powerful theoretical framework for analyzing systems of infinitely many interacting agents.<n>This paper presents a scalable deep Reinforcement Learning (RL) approach to approximate equilibrium solutions of MFCGs.
arXiv Detail & Related papers (2024-12-28T02:04:53Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance.
Most present techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context.
In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss.
arXiv Detail & Related papers (2024-10-07T09:08:32Z) - Artificial-Intelligence-Driven Shot Reduction in Quantum Measurement [6.649102874357367]
Variational Quantum Eigensolver (VQE) provides a powerful solution for approximating molecular ground state energies.
Estimate probabilistic outcomes on quantum hardware requires repeated measurements (shots)
This paper proposes a reinforcement learning based approach that automatically learns shot assignment policies to minimize total measurement shots.
arXiv Detail & Related papers (2024-05-03T21:51:07Z) - Reconfigurable Intelligent Surface (RIS)-Assisted Entanglement
Distribution in FSO Quantum Networks [62.87033427172205]
Quantum networks (QNs) relying on free-space optical (FSO) quantum channels can support quantum applications in environments where establishing an optical fiber infrastructure is challenging and costly.
A reconfigurable intelligent surface (RIS)-assisted FSO-based QN is proposed as a cost-efficient framework providing a virtual line-of-sight between users for entanglement distribution.
arXiv Detail & Related papers (2024-01-19T17:16:40Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Non-Cooperative Game Theory Based Rate Adaptation for Dynamic Video
Streaming over HTTP [89.30855958779425]
Dynamic Adaptive Streaming over HTTP (DASH) has demonstrated to be an emerging and promising multimedia streaming technique.
We propose a novel algorithm to optimally allocate the limited export bandwidth of the server to multi-users to maximize their Quality of Experience (QoE) with fairness guaranteed.
arXiv Detail & Related papers (2019-12-27T01:19:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.