Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
- URL: http://arxiv.org/abs/2504.17717v1
- Date: Thu, 24 Apr 2025 16:19:13 GMT
- Title: Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
- Authors: Óscar Escudero-Arnanz, Antonio G. Marques, Inmaculada Mora-Jiménez, Joaquín Álvarez-Rodríguez, Cristina Soguero-Ruiz,
- Abstract summary: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality.<n>This study proposes an interpretable Machine Learning framework for MDR prediction, aiming for both accurate inference and enhanced explainability.
- Score: 8.062368743143388
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
Related papers
- MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
We compare various strategies for predicting survival at the WSI and patient level.
The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.
The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
arXiv Detail & Related papers (2025-03-29T11:14:02Z) - Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
We present XST-CNN (eXG-Temporal Graph Conal Neural Network), a novel architecture for processing heterogeneous and irregular Multi Time Series (MTS) data.
Our approach captures temporal and feature within a unifiedtemporal-temporal pipeline by leveraging a GCNN pipeline.
We evaluate XST-CNN using real-world Electronic Health Record data to predict Multidrug Resistance (MDR) in ICU patients.
arXiv Detail & Related papers (2024-11-01T22:53:17Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Explainable Artificial Intelligence Techniques for Irregular Temporal Classification of Multidrug Resistance Acquisition in Intensive Care Unit Patients [7.727213847237959]
This study introduces a novel methodology that integrates Gated Recurrent Units (GRUs) with advanced intrinsic and post-hoc interpretability techniques.
Our methodology aims to identify specific risk factors associated with Multidrug-Resistant (MDR) infections in ICU patients.
arXiv Detail & Related papers (2024-07-24T11:12:01Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Multimodal Interpretable Data-Driven Models for Early Prediction of
Antimicrobial Multidrug Resistance Using Multivariate Time-Series [6.804748007823268]
We present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain)
The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake.
arXiv Detail & Related papers (2024-02-09T10:16:58Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.