EduBot -- Can LLMs Solve Personalized Learning and Programming Assignments?
- URL: http://arxiv.org/abs/2504.17824v1
- Date: Wed, 23 Apr 2025 23:25:13 GMT
- Title: EduBot -- Can LLMs Solve Personalized Learning and Programming Assignments?
- Authors: Yibin Wang, Jiaxi Xie, Lakshminarayanan Subramanian,
- Abstract summary: EduBot is an intelligent automated assistant system that combines conceptual knowledge teaching, end-to-end code development, and personalized programming.<n>We show that EduBot can solve complicated programming tasks consisting of sub-tasks with increasing difficulties.
- Score: 5.368221703783741
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The prevalence of Large Language Models (LLMs) is revolutionizing the process of writing code. General and code LLMs have shown impressive performance in generating standalone functions and code-completion tasks with one-shot queries. However, the ability to solve comprehensive programming tasks with recursive requests and bug fixes remains questionable. In this paper, we propose EduBot, an intelligent automated assistant system that combines conceptual knowledge teaching, end-to-end code development, personalized programming through recursive prompt-driven methods, and debugging with limited human interventions powered by LLMs. We show that EduBot can solve complicated programming tasks consisting of sub-tasks with increasing difficulties ranging from conceptual to coding questions by recursive automatic prompt-driven systems without finetuning on LLMs themselves. To further evaluate EduBot's performance, we design and conduct a benchmark suite consisting of 20 scenarios in algorithms, machine learning, and real-world problems. The result shows that EduBot can complete most scenarios in less than 20 minutes. Based on the benchmark suites, we perform a comparative study to take different LLMs as the backbone and to verify EduBot's compatibility and robustness across LLMs with varying capabilities. We believe that EduBot is an exploratory approach to explore the potential of pre-trained LLMs in multi-step reasoning and code generation for solving personalized assignments with knowledge learning and code generation.
Related papers
- CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.
We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
Large Language Models (LLMs) have shown outstanding breakthroughs in code generation.<n>Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs.<n>We propose a textbfCase2Code task by exploiting the expressiveness and correctness of programs.
arXiv Detail & Related papers (2024-07-17T11:35:00Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.<n>Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.<n>We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes.
We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university.
arXiv Detail & Related papers (2024-04-06T12:06:56Z) - Code Simulation Challenges for Large Language Models [6.970495767499435]
This work studies to what extent Large Language Models (LLMs) can simulate coding and algorithmic tasks.
We introduce benchmarks for straight-line programs, code that contains critical paths, and approximate and redundant instructions.
We propose a novel off-the-shelf prompting method, Chain of Simulation (CoSm), which instructs LLMs to simulate code execution line by line/follow the pattern of compilers.
arXiv Detail & Related papers (2024-01-17T09:23:59Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models are assessed.
Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting, perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
arXiv Detail & Related papers (2023-12-19T20:39:12Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - LEMMA: Learning Language-Conditioned Multi-Robot Manipulation [21.75163634731677]
LanguagE-Conditioned Multi-robot MAnipulation (LEMMA)
LeMMA features 8 types of procedurally generated tasks with varying degree of complexity.
For each task, we provide 800 expert demonstrations and human instructions for training and evaluations.
arXiv Detail & Related papers (2023-08-02T04:37:07Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Learning to Plan with Natural Language [111.76828049344839]
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
arXiv Detail & Related papers (2023-04-20T17:09:12Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.