Beyond Task and Motion Planning: Hierarchical Robot Planning with General-Purpose Policies
- URL: http://arxiv.org/abs/2504.17901v1
- Date: Thu, 24 Apr 2025 19:22:50 GMT
- Title: Beyond Task and Motion Planning: Hierarchical Robot Planning with General-Purpose Policies
- Authors: Benned Hedegaard, Ziyi Yang, Yichen Wei, Ahmed Jaafar, Stefanie Tellex, George Konidaris, Naman Shah,
- Abstract summary: We address the challenge of planning with both kinematic skills and closed-loop motor controllers.<n>We propose a novel method that integrates these controllers into motion planning using Composable Interaction Primitives.
- Score: 32.85839714467011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task and motion planning is a well-established approach for solving long-horizon robot planning problems. However, traditional methods assume that each task-level robot action, or skill, can be reduced to kinematic motion planning. In this work, we address the challenge of planning with both kinematic skills and closed-loop motor controllers that go beyond kinematic considerations. We propose a novel method that integrates these controllers into motion planning using Composable Interaction Primitives (CIPs), enabling the use of diverse, non-composable pre-learned skills in hierarchical robot planning. Toward validating our Task and Skill Planning (TASP) approach, we describe ongoing robot experiments in real-world scenarios designed to demonstrate how CIPs can allow a mobile manipulator robot to effectively combine motion planning with general-purpose skills to accomplish complex tasks.
Related papers
- COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.<n>A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.<n>The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Potential Based Diffusion Motion Planning [73.593988351275]
We propose a new approach towards learning potential based motion planning.
We train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories.
We demonstrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
arXiv Detail & Related papers (2024-07-08T17:48:39Z) - Optimal Integrated Task and Path Planning and Its Application to
Multi-Robot Pickup and Delivery [10.530860023128406]
We propose a generic multi-robot planning mechanism that combines an optimal task planner and an optimal path planner.
The Integrated planner, through the interaction of the task planner and the path planner, produces optimal collision-free trajectories for the robots.
arXiv Detail & Related papers (2024-03-02T17:48:40Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Cooperative Task and Motion Planning for Multi-Arm Assembly Systems [32.56644393804845]
Multi-robot assembly systems are becoming increasingly appealing in manufacturing.
Planning for these systems in a manner that ensures each robot is simultaneously productive, and not idle, is challenging.
We present a task and motion planning framework that jointly plans safe, low-makespan plans for a team of robots to assemble complex spatial structures.
arXiv Detail & Related papers (2022-03-04T18:12:49Z) - Fast-reactive probabilistic motion planning for high-dimensional robots [15.082715993594121]
p-Chekov is a fast-reactive motion planning system that can provide safety guarantees for high-dimensional robots suffering from process noises and observation noises.
Comprehensive theoretical and empirical analysis shows that p-Chekov can effectively satisfy user-specified chance constraints over collision risk in practical robotic manipulation tasks.
arXiv Detail & Related papers (2020-12-03T17:51:07Z) - Learning compositional models of robot skills for task and motion
planning [39.36562555272779]
We learn to use sensorimotor primitives to solve complex long-horizon manipulation problems.
We use state-of-the-art methods for active learning and sampling.
We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions.
arXiv Detail & Related papers (2020-06-08T20:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.