Pseudomagic Quantum States
- URL: http://arxiv.org/abs/2308.16228v3
- Date: Mon, 27 May 2024 18:19:29 GMT
- Title: Pseudomagic Quantum States
- Authors: Andi Gu, Lorenzo Leone, Soumik Ghosh, Jens Eisert, Susanne Yelin, Yihui Quek,
- Abstract summary: "Notions of nonstabilizerness" quantify how non-classical quantum states are in a precise sense.
We introduce 'pseudomagic' ensembles of quantum states that, despite low nonstabilizerness, are computationally indistinguishable from those with high nonstabilizerness.
- Score: 1.693280275647873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Notions of nonstabilizerness, or "magic", quantify how non-classical quantum states are in a precise sense: states exhibiting low nonstabilizerness preclude quantum advantage. We introduce 'pseudomagic' ensembles of quantum states that, despite low nonstabilizerness, are computationally indistinguishable from those with high nonstabilizerness. Previously, such computational indistinguishability has been studied with respect to entanglement, introducing the concept of pseudoentanglement. However, we demonstrate that pseudomagic neither follows from pseudoentanglement nor implies it. In terms of applications, the study of pseudomagic offers fresh insights into the theory of quantum scrambling: it uncovers states that, even though they originate from non-scrambling unitaries, remain indistinguishable from scrambled states to any physical observer. Additional applications include new lower bounds on state synthesis problems, property testing protocols, and implications for quantum cryptography. Our work is driven by the observation that only quantities measurable by a computationally bounded observer - intrinsically limited by finite-time computational constraints - hold physical significance. Ultimately, our findings suggest that nonstabilizerness is a 'hide-able' characteristic of quantum states: some states are much more magical than is apparent to a computationally bounded observer.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Retrieving non-stabilizerness with Neural Networks [0.0]
We introduce a novel approach leveraging Convolutional Neural Networks (CNNs) to classify quantum states based on their magic content.
Our methodology circumvents the limitations of full state tomography, offering a practical solution for real-world quantum experiments.
arXiv Detail & Related papers (2024-03-01T19:02:09Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Enhancement of non-Stabilizerness within Indefinite Causal Order [6.612068248407539]
The quantum SWITCH allows quantum states to pass through operations in a superposition of different orders, outperforming traditional circuits in numerous tasks.
We find that the completely stabilizer-preserving operations, which cannot generate magic states under standard conditions, can be transformed to do so when processed by the quantum SWITCH.
These findings reveal the unique properties of the quantum SWITCH and open avenues in research on nonstabilizer resources of general quantum architecture.
arXiv Detail & Related papers (2023-11-27T02:35:48Z) - Limitations of Classically-Simulable Measurements for Quantum State Discrimination [7.0937306686264625]
stabilizer operations play a pivotal role in fault-tolerant quantum computing.
We investigate the limitations of classically-simulable measurements in distinguishing quantum states.
arXiv Detail & Related papers (2023-10-17T15:01:54Z) - Finitely Repeated Adversarial Quantum Hypothesis Testing [22.102728605081534]
We formulate a passive quantum detector based on a quantum hypothesis testing framework under the setting of finite sample size.
Under the assumption that the attacker adopts separable optimal strategies, we derive that the worst-case average error bound converges to zero exponentially.
We adopt our formulations upon a case study of detection with quantum radars.
arXiv Detail & Related papers (2022-12-02T17:08:17Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Scalable measures of magic resource for quantum computers [0.0]
We introduce efficient measures of magic resource for pure quantum states with a sampling cost independent of the number of qubits.
We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer.
arXiv Detail & Related papers (2022-04-21T12:50:47Z) - Robust phase estimation of Gaussian states in the presence of outlier
quantum states [21.22196305592545]
We first present a statistical framework of robust statistics in a quantum system to handle outlier quantum states.
We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states.
arXiv Detail & Related papers (2020-08-05T04:57:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.