論文の概要: Bayesian Quantum Orthogonal Neural Networks for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2504.18103v1
- Date: Fri, 25 Apr 2025 06:16:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.66086
- Title: Bayesian Quantum Orthogonal Neural Networks for Anomaly Detection
- Title(参考訳): 異常検出のためのベイズ量子直交ニューラルネットワーク
- Authors: Natansh Mathur, Brian Coyle, Nishant Jain, Snehal Raj, Akshat Tandon, Jasper Simon Krauser, Rainer Stoessel,
- Abstract要約: 我々は,3次元物体の異常を検出するために,3次元畳み込みニューラルネットワークの量子バージョンを開発した。
量子コンピュータを量子化異常検出パイプラインに組み込むことの可能性を検証する。
- 参考スコア(独自算出の注目度): 1.995438765367444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identification of defects or anomalies in 3D objects is a crucial task to ensure correct functionality. In this work, we combine Bayesian learning with recent developments in quantum and quantum-inspired machine learning, specifically orthogonal neural networks, to tackle this anomaly detection problem for an industrially relevant use case. Bayesian learning enables uncertainty quantification of predictions, while orthogonality in weight matrices enables smooth training. We develop orthogonal (quantum) versions of 3D convolutional neural networks and show that these models can successfully detect anomalies in 3D objects. To test the feasibility of incorporating quantum computers into a quantum-enhanced anomaly detection pipeline, we perform hardware experiments with our models on IBM's 127-qubit Brisbane device, testing the effect of noise and limited measurement shots.
- Abstract(参考訳): 3Dオブジェクトの欠陥や異常を識別することは、正しい機能を保証するための重要なタスクである。
本研究では、ベイズ学習と最近の量子および量子にインスパイアされた機械学習、特に直交ニューラルネットワークの発展を組み合わせることで、産業関連ユースケースにおけるこの異常検出問題に対処する。
ベイズ学習は予測の不確実な定量化を可能にし、ウェイト行列の直交性はスムーズなトレーニングを可能にする。
我々は、3D畳み込みニューラルネットワークの直交(量子)バージョンを開発し、これらのモデルが3Dオブジェクトの異常をうまく検出できることを示す。
量子コンピュータを量子化異常検出パイプラインに組み込む可能性をテストするため、我々はIBMの127量子ビットブリスベンデバイスでハードウェア実験を行い、ノイズと限られた測定ショットの効果を試験した。
関連論文リスト
- Qsco: A Quantum Scoring Module for Open-set Supervised Anomaly Detection [5.931953711154524]
複雑なデータ構造を扱う量子コンピューティングの最近の進歩と機械学習モデルの改善は、異常検出手法におけるパラダイムシフトを先導している。
本研究では、量子変動回路をニューラルネットワークに埋め込み、不確実性やラベルなしデータを扱う際のモデルの処理能力を向上する量子スコーリングモジュール(Qsco)を提案する。
論文 参考訳(メタデータ) (2024-05-25T22:37:43Z) - Long-lived Particles Anomaly Detection with Parametrized Quantum Circuits [0.0]
パラメタライズド量子回路に基づく異常検出アルゴリズムを提案する。
このアルゴリズムは古典的なコンピュータで訓練され、シミュレーションや実際の量子ハードウェアでテストされている。
論文 参考訳(メタデータ) (2023-12-07T11:50:42Z) - 3D-QAE: Fully Quantum Auto-Encoding of 3D Point Clouds [71.39129855825402]
既存の3D表現の学習方法は、古典的なハードウェアでトレーニングされ、テストされるディープニューラルネットワークである。
本稿では3次元点雲のための最初の量子オートエンコーダを紹介する。
論文 参考訳(メタデータ) (2023-11-09T18:58:33Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
本稿では,量子ニューラルネットワークのための新しい量子ニューラルネットワークモデルを提案する。
我々のモデルは、状態空間のサイズがニューロンの数とともに指数関数的に大きくなるという問題を回避している。
我々は手書き文字認識や他の非線形分類タスクのモデルをベンチマークする。
論文 参考訳(メタデータ) (2023-05-15T11:16:47Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Identification of quantum entanglement with Siamese convolutional neural networks and semi-supervised learning [0.0]
量子絡み合いは、様々な量子情報プロトコルやアルゴリズムで一般的に使用される基本的な性質である。
本研究では、教師付き機械学習の一種であるディープ畳み込みNNを用いて、3量子系における任意の二分割の量子絡みを同定する。
論文 参考訳(メタデータ) (2022-10-13T23:17:55Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Analysis of Neural Network Predictions for Entanglement Self-Catalysis [0.0]
ニューラルネットワークの異なるモデルが絡み合いの検出と自己触媒の仕方を学ぶことができるかどうかを検討する。
また、学習機械が別の関連する現象を検知できるかどうかについても検討する。
論文 参考訳(メタデータ) (2021-12-29T14:18:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Detecting quantum entanglement with unsupervised learning [5.136040801991848]
本研究では,量子特徴のない正規サンプルの凸性を利用し,教師なし機械学習法を設計,量子特徴を異常として検出する。
本研究では,疑似シメセネットワークとジェネレーション対向ネットからなる複雑値ニューラルネットワークを提案し,それを分離可能な状態のみで訓練し,絡み合う非線形の証人を構築する。
この結果はベル非局所性やステアビリティといった他の量子リソースの検出に容易に適用でき、高次元量子データに隠された量子特徴を抽出する強力なツールを提供できることを示唆する。
論文 参考訳(メタデータ) (2021-03-08T14:56:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。