論文の概要: Analysis of Neural Network Predictions for Entanglement Self-Catalysis
- arxiv url: http://arxiv.org/abs/2112.14565v1
- Date: Wed, 29 Dec 2021 14:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 23:25:47.093244
- Title: Analysis of Neural Network Predictions for Entanglement Self-Catalysis
- Title(参考訳): 絡み合い自己触媒のためのニューラルネットワーク予測の解析
- Authors: Tha\'is M. Ac\'acio and Cristhiano Duarte
- Abstract要約: ニューラルネットワークの異なるモデルが絡み合いの検出と自己触媒の仕方を学ぶことができるかどうかを検討する。
また、学習機械が別の関連する現象を検知できるかどうかについても検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques have been successfully applied to classifying an
extensive range of phenomena in quantum theory. From detecting quantum phase
transitions to identifying Bell non-locality, it has been established that
classical machines can learn genuine quantum features via classical data.
Quantum entanglement is one of the uniquely quantum phenomena in that range, as
it has been shown that neural networks can be used to classify different types
of entanglement. Our work builds on this topic. We investigate whether distinct
models of neural networks can learn how to detect catalysis and self-catalysis
of entanglement. Additionally, we also study whether a trained machine can
detect another related phenomenon - which we dub transfer knowledge. As we
build our models from scratch, besides making all the codes available, we can
study a whole gamut of paradigmatic measures, including accuracy, execution
time, training time, bias in the training data set and so on.
- Abstract(参考訳): 機械学習技術は、量子論における幅広い現象の分類にうまく応用されている。
量子相転移の検出からベルの非局所性同定まで、古典的機械は古典的データを通じて真の量子的特徴を学習できることが確立されている。
量子絡み合い(quantum entanglement)は、その範囲でユニークな量子現象の1つであり、ニューラルネットワークが様々なタイプの絡み合いを分類するために使用できることが示されている。
私たちの仕事はこの話題に基づいている。
ニューラルネットワークの異なるモデルが、絡み合いの触媒や自己触媒を検出する方法を学ぶことができるかどうかを検討する。
さらに,学習した機械が他の関連する現象を検知できるかどうかについても検討した。
モデルをスクラッチから構築すると同時に、すべてのコードが利用可能になるだけでなく、正確性、実行時間、トレーニング時間、トレーニングデータセットのバイアスなど、さまざまなパラダイム的な測定方法も研究できます。
関連論文リスト
- ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - On the Interpretability of Quantum Neural Networks [0.0]
人工知能(AI)手法、特にディープニューラルネットワークの解釈可能性は非常に興味深い。
本稿では,古典的ニューラルネットワークによく用いられる局所的モデルに依存しない解釈可能性尺度を用いて,量子ニューラルネットワークの解釈可能性について検討する。
我々の説明の1つの特徴は、データサンプルが本質的にランダムな量子測定の対象であるランダムなラベルを与えられた領域の描写である。
論文 参考訳(メタデータ) (2023-08-22T00:43:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Deep learning of many-body observables and quantum information scrambling [0.0]
物理オブザーバブルの力学を学習する際のデータ駆動型ディープニューラルネットワークの能力が、量子情報のスクランブルとどのように相関するかを考察する。
ニューラルネットワークを用いて、モデルのパラメータからランダム量子回路における可観測物の進化へのマッピングを求める。
特定のタイプのリカレントニューラルネットワークは、局所的およびスクランブルされた状態の両方でトレーニングされたシステムサイズと時間ウィンドウ内での予測を一般化する上で非常に強力であることを示す。
論文 参考訳(メタデータ) (2023-02-09T13:14:10Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Machine learning approach for quantum non-Markovian noise classification [1.2891210250935146]
機械学習と人工ニューラルネットワークモデルを用いてノイズの多い量子力学を分類できることを示した。
提案手法は, 多数の実験手法の直接的応用と, 既に利用可能な雑音型中間規模量子デバイスのノイズベンチマークへの応用が期待できる。
論文 参考訳(メタデータ) (2021-01-08T20:56:56Z) - Phase Detection with Neural Networks: Interpreting the Black Box [58.720142291102135]
ニューラルネットワーク(NN)は通常、予測の背後にある推論に対する洞察を妨げます。
本研究では,1次元拡張スピンレスFermi-Hubbardモデルの位相を半充足で予測するために,NNのブラックボックスをいかに影響関数が解き放つかを示す。
論文 参考訳(メタデータ) (2020-04-09T17:45:45Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。