Increasing quantum speed meter sensitivity using optical spring
- URL: http://arxiv.org/abs/2503.10332v1
- Date: Thu, 13 Mar 2025 13:08:00 GMT
- Title: Increasing quantum speed meter sensitivity using optical spring
- Authors: L. A. Barinov, F. Ya. Khalili,
- Abstract summary: We show that the speed meter type broadband sensitivity gain with the additional lows-frequency minimum in the quantum noise originated from the optical spring can coexist.<n>We show that the location of this minimum can be varied without affecting the core optics of the interferometer, allowing to tune the quantum noise shape in real time to follow the chirp'' GW signals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The double-pass interferometer scheme was proposed in Ref.\,[Light Sci. Appl. {\bf 7}, 11 (2018)] as the method of implementation of the quantum speed meter concept in future laser gravitational-wave (GW) detectors. Later it was shown in Ref.\,[Phys. Rev. D {\bf 110}, 062006 (2024)] that it allows to implement the new type of the optical spring that does not require detuning of the interferometer. Here we show that both these regimes can coexist, combining the speed meter type broadband sensitivity gain with the additional lows-frequency minimum in the quantum noise originated from the optical spring. We show that the location of this minimum can be varied without affecting the core optics of the interferometer, allowing to tune the quantum noise shape in real time to follow the ``chirp'' GW signals.
Related papers
- Teleportation-based Speed Meter for Precision Measurement [11.118338267742097]
We propose a quantum teleportation-based speed meter for interferometric displacement sensing.
Two equivalent implementations are presented that reduce quantum radiation pressure noise and surpass the standard quantum limit of measuring displacement.
This approach offers a new path to back-action evasion enabled by quantum entanglement.
arXiv Detail & Related papers (2025-04-25T06:29:24Z) - Quantum-amplified global-phase spectroscopy on an optical clock transition [5.423659793487148]
We adapt the holonomic quantum-gate concept to develop a novel Rabi-type "global-phase spectroscopy" (GPS)
We are able to demonstrate quantum-amplified time-reversal spectroscopy in an OLC that achieves 2.4(5) dB metrological gain without subtracting the laser noise.
Our technique is not limited by measurement resolution, scales easily owing to the global nature of entangling interaction, and exhibits high resilience to typical experimental imperfections.
arXiv Detail & Related papers (2025-04-02T17:18:18Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - First-step experiment in developing optical-spring quantum locking for
DECIGO: sensitivity optimization for simulated quantum noise by completing
the square [1.7030294562102306]
DECIGO has 1,000-km-long arm cavities mainly to detect primordial gravitational waves (PGW) at lower around 0.1 Hz.
We experimentally verify one key element of the optical-spring quantum locking: sensitivity optimization by completing the square of multiple detector outputs.
arXiv Detail & Related papers (2022-11-23T03:32:10Z) - Single-Photon Signal Sideband Detection for High-Power Michelson
Interferometers [0.0]
The Michelson interferometer is a cornerstone of experimental physics.
Interferometer precision provides a unique view of the fundamental medium of matter and energy.
arXiv Detail & Related papers (2022-11-08T05:27:15Z) - An acousto-optic modulator based bi-frequency interferometer for quantum
technology [1.3831703318753605]
We demonstrate a high performance AOM based bi-frequency interferometer, which can realize either beating or beating free interference for single photon level quantum state.
We further demonstrate applications of the interferometer in quantum technology, including bi-frequency coherent combination, frequency tuning and optical switching.
arXiv Detail & Related papers (2022-10-02T01:59:46Z) - Quantum-Assisted Optical Interferometers: Instrument Requirements [37.89976990030855]
We propose that photons from two different sources could be interfered at two decoupled stations, requiring only a slow classical connection between them.
We show that this approach could allow high-precision measurements of the relative astrometry of the two sources, with a simple estimate giving angular resolution of $10 mu$as in a few hours' observation of two bright stars.
arXiv Detail & Related papers (2020-12-04T19:25:02Z) - A protocol of potential advantage in the low frequency range to
gravitational wave detection with space based optical atomic clocks [0.0]
We propose a new measurement method for gravitational wave detection in low frequency with optical lattice atomic clocks.
Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.
arXiv Detail & Related papers (2020-05-14T08:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.