論文の概要: Time and Frequency Domain-based Anomaly Detection in Smart Meter Data for Distribution Network Studies
- arxiv url: http://arxiv.org/abs/2504.18231v1
- Date: Fri, 25 Apr 2025 10:26:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.737526
- Title: Time and Frequency Domain-based Anomaly Detection in Smart Meter Data for Distribution Network Studies
- Title(参考訳): 配電網研究のためのスマートメータデータにおける時間・周波数領域に基づく異常検出
- Authors: Petar Labura, Tomislav Antic, Tomislav Capuder,
- Abstract要約: 本稿では,異常がパワーデータセットに与える影響を検知・緩和する手法に焦点をあてる。
分離フォレスト機械学習アルゴリズムと高速フーリエ変換フィルタに基づく異常検出フレームワークを提案する。
異常検出手法を統合することの重要性は, スマートメータを多用した分散ネットワークにおいて重要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread integration of new technologies in low-voltage distribution networks on the consumer side creates the need for distribution system operators to perform advanced real-time calculations to estimate network conditions. In recent years, data-driven models based on machine learning and big data analysis have emerged for calculation purposes, leveraging the information available in large datasets obtained from smart meters and other advanced measurement infrastructure. However, existing data-driven algorithms do not take into account the quality of data collected from smart meters. They lack built-in anomaly detection mechanisms and fail to differentiate anomalies based on whether the value or context of anomalous data instances deviates from the norm. This paper focuses on methods for detecting and mitigating the impact of anomalies on the consumption of active and reactive power datasets. It proposes an anomaly detection framework based on the Isolation Forest machine learning algorithm and Fast Fourier Transform filtering that works in both the time and frequency domain and is unaffected by point anomalies or contextual anomalies of the power consumption data. The importance of integrating anomaly detection methods is demonstrated in the analysis important for distribution networks with a high share of smart meters.
- Abstract(参考訳): 消費者側の低電圧配電ネットワークにおける新技術の広範な統合は、分散システムオペレーターがネットワーク条件を推定するために高度なリアルタイム計算を行う必要性を生じさせる。
近年、機械学習とビッグデータ分析に基づくデータ駆動モデルが登場し、スマートメーターやその他の高度な測定インフラから得られる大規模なデータセットで利用可能な情報を活用している。
しかし、既存のデータ駆動アルゴリズムは、スマートメーターから収集したデータの質を考慮していない。
組み込みの異常検出機構がなく、異常データインスタンスの値やコンテキストが標準から逸脱しているかどうかに基づいて、異常を区別できない。
本稿では,アクティブかつリアクティブなパワーデータセットの消費に対する異常の影響を検知・緩和する手法に焦点をあてる。
アイソレーションフォレスト機械学習アルゴリズムと高速フーリエ変換フィルタに基づく異常検出フレームワークを提案する。これは時間領域と周波数領域の両方で動作し、電力消費データの点異常や文脈異常の影響を受けない。
異常検出手法を統合することの重要性は, スマートメータを多用した分散ネットワークにおいて重要である。
関連論文リスト
- A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data [6.229535970620059]
本稿では,時系列データセットにおける異常検出のための移動学習モデルを提案する。
従来の手法とは異なり、我々の手法はソースまたはターゲットドメインのラベル付きデータを必要としない。
新たな侵入検出データセットの実証評価は,我々のモデルが既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2025-01-26T02:03:49Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - Anomaly Detection in Power Grids via Context-Agnostic Learning [4.865842426618145]
グリッド上のセンサの固定セットから得られる時系列測定値を考えると、ネットワークトポロジや測定データの異常を識別できるだろうか?
近年のデータ駆動型ML技術は、現在のデータと過去のデータを組み合わせて異常検出を行っている。
本稿では,正規位相と負荷/世代変化の影響を考慮した,文脈認識型異常検出アルゴリズムGridCALを提案する。
論文 参考訳(メタデータ) (2024-04-11T16:37:01Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
本稿では,アテンション機構を備えた変分リカレントオートエンコーダに基づく教師なし異常検出手法を提案する。
スマートメーターの「汚れ」データを用いて、学習中の貢献度を減少させるために、欠落した値とグローバルな異常を事前に検出する。
論文 参考訳(メタデータ) (2022-06-08T19:39:51Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
エッジコンピューティングを有効にするスマート温室は、IoT技術の代表的なアプリケーションである。
従来の異常検出アルゴリズムは、無線センサによって生成されたデータストリームの特性を適切に考慮していない。
論文 参考訳(メタデータ) (2021-07-28T13:32:12Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。