論文の概要: A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data
- arxiv url: http://arxiv.org/abs/2501.15365v1
- Date: Sun, 26 Jan 2025 02:03:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:28.848302
- Title: A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data
- Title(参考訳): 多変量IoTトラフィックデータにおける異常検出のための転送学習フレームワーク
- Authors: Mahshid Rezakhani, Tolunay Seyfi, Fatemeh Afghah,
- Abstract要約: 本稿では,時系列データセットにおける異常検出のための移動学習モデルを提案する。
従来の手法とは異なり、我々の手法はソースまたはターゲットドメインのラベル付きデータを必要としない。
新たな侵入検出データセットの実証評価は,我々のモデルが既存の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 6.229535970620059
- License:
- Abstract: In recent years, rapid technological advancements and expanded Internet access have led to a significant rise in anomalies within network traffic and time-series data. Prompt detection of these irregularities is crucial for ensuring service quality, preventing financial losses, and maintaining robust security standards. While machine learning algorithms have shown promise in achieving high accuracy for anomaly detection, their performance is often constrained by the specific conditions of their training data. A persistent challenge in this domain is the scarcity of labeled data for anomaly detection in time-series datasets. This limitation hampers the training efficacy of both traditional machine learning and advanced deep learning models. To address this, unsupervised transfer learning emerges as a viable solution, leveraging unlabeled data from a source domain to identify anomalies in an unlabeled target domain. However, many existing approaches still depend on a small amount of labeled data from the target domain. To overcome these constraints, we propose a transfer learning-based model for anomaly detection in multivariate time-series datasets. Unlike conventional methods, our approach does not require labeled data in either the source or target domains. Empirical evaluations on novel intrusion detection datasets demonstrate that our model outperforms existing techniques in accurately identifying anomalies within an entirely unlabeled target domain.
- Abstract(参考訳): 近年、技術進歩とインターネットアクセスの拡大により、ネットワークトラフィックや時系列データにおける異常が著しく増加している。
これらの不規則性の検出は、サービス品質の確保、金銭的損失の防止、堅牢なセキュリティ標準の維持に不可欠である。
機械学習アルゴリズムは、異常検出の高精度化を約束する一方で、その性能はトレーニングデータの特定の条件によって制約されることが多い。
この領域における永続的な課題は、時系列データセットにおける異常検出のためのラベル付きデータの不足である。
この制限は、従来の機械学習と高度なディープラーニングモデルのトレーニング効果を損なう。
これを解決するために、教師なし転送学習は、ソースドメインからのラベルなしデータを活用して、ラベルなしターゲットドメイン内の異常を識別する、実行可能なソリューションとして現れる。
しかし、既存の多くのアプローチは、まだターゲットドメインからの少量のラベル付きデータに依存している。
これらの制約を克服するために,多変量時系列データセットにおける異常検出のための移動学習モデルを提案する。
従来の手法とは異なり、我々の手法はソースまたはターゲットドメインのラベル付きデータを必要としない。
新たな侵入検出データセットの実験的評価により,本モデルは,全くラベルの付けられていない対象領域内の異常を正確に識別する上で,既存の手法よりも優れていることが示された。
関連論文リスト
- Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
本稿では,学習可能なデータ拡張に基づく時系列異常検出(LATAD)手法を提案する。
LATADは、比較学習を通じて時系列データから識別的特徴を抽出する。
その結果、LATADは最先端の異常検出評価に匹敵する、あるいは改善された性能を示した。
論文 参考訳(メタデータ) (2024-06-18T04:25:56Z) - Weakly Supervised Anomaly Detection via Knowledge-Data Alignment [24.125871437370357]
マルウェア検出、マネーロンダリング、デバイス障害検出、ネットワーク障害解析など、多数のWebベースのアプリケーションにおいて、異常検出が重要な役割を果たす。
Weakly Supervised Anomaly Detection (WSAD) が導入された。
本稿では,ルール知識を統合するための知識データアライメント(KDAlign)について紹介する。
論文 参考訳(メタデータ) (2024-02-06T07:57:13Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern
Approaches for Mass Data Mining [0.6754597324022876]
外乱検出は、システム障害、不正行為、およびデータ内のパターンに関する重要な情報を明らかにすることができる。
本稿では、異なる質量データマイニング領域を持つWePaMaDM-Outlier Detectionを提案する。
また, 監視, 故障検出, 傾向解析において, 異常検出技術におけるデータモデリングの重要性についても検討した。
論文 参考訳(メタデータ) (2023-06-09T07:00:00Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
一部のターゲット問題ドメインでは、学習プロセスを妨げる可能性のあるデータサンプルがあまりありません。
類似のソースドメインからのラベルなしデータを活用した弱い適応学習(wal)手法を提案する。
本実験は,対象領域に限定されたラベル付きデータを含む正確な分類器を学習する手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T06:19:25Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。