DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering
- URL: http://arxiv.org/abs/2504.18243v1
- Date: Fri, 25 Apr 2025 10:43:53 GMT
- Title: DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering
- Authors: Rong Cheng, Jinyi Liu, YAN ZHENG, Fei Ni, Jiazhen Du, Hangyu Mao, Fuzheng Zhang, Bo Wang, Jianye HAO,
- Abstract summary: Multi-Hop Question Answering (MHQA) tasks pose challenges in orchestrating multi-step reasoning across diverse knowledge domains.<n>We propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval.
- Score: 45.205396863347964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Hop Question Answering (MHQA) tasks permeate real-world applications, posing challenges in orchestrating multi-step reasoning across diverse knowledge domains. While existing approaches have been improved with iterative retrieval, they still struggle to identify and organize dynamic knowledge. To address this, we propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval. DualRAG operates through two tightly coupled processes: Reasoning-augmented Querying (RaQ) and progressive Knowledge Aggregation (pKA). They work in concert: as RaQ navigates the reasoning path and generates targeted queries, pKA ensures that newly acquired knowledge is systematically integrated to support coherent reasoning. This creates a virtuous cycle of knowledge enrichment and reasoning refinement. Through targeted fine-tuning, DualRAG preserves its sophisticated reasoning and retrieval capabilities even in smaller-scale models, demonstrating its versatility and core advantages across different scales. Extensive experiments demonstrate that this dual-process approach substantially improves answer accuracy and coherence, approaching, and in some cases surpassing, the performance achieved with oracle knowledge access. These results establish DualRAG as a robust and efficient solution for complex multi-hop reasoning tasks.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation [35.555200530999365]
We introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM)<n>Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process.
arXiv Detail & Related papers (2025-06-21T14:58:53Z) - CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG [53.950029990391066]
Cross-source knowledge textbfReconciliation for Multimodal RAG (CoRe-MMRAG)<n>We propose a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources.<n>Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods.
arXiv Detail & Related papers (2025-06-03T07:32:40Z) - iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering [6.4524748618007415]
iQUEST is a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions.<n>We integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step.
arXiv Detail & Related papers (2025-06-02T15:30:02Z) - Credible Plan-Driven RAG Method for Multi-Hop Question Answering [2.5772544412212985]
We propose PAR-RAG (Plan-then-Act-and-Review RAG), a novel framework inspired by the PDCA (Plan-Do-Check-Act) cycle.<n>Par-RAG selects exemplars matched by the semantic complexity of the current question to guide complexity-aware top-down planning.<n>A dual-verification mechanism evaluates and corrects intermediate errors, ensuring that the reasoning process remains factually grounded.
arXiv Detail & Related papers (2025-04-23T15:03:17Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Memory-Aware and Uncertainty-Guided Retrieval for Multi-Hop Question Answering [11.756344944226495]
Multi-hop question answering requires models to retrieve and reason over multiple pieces of evidence.<n>Existing methods often suffer from two key limitations: fixed or overly frequent retrieval steps, and ineffective use of previously retrieved knowledge.<n>We propose MIND, a framework that addresses these challenges through: (i) prompt-based entity extraction to identify reasoning-relevant elements, (ii) dynamic retrieval triggering based on token-level entropy and attention signals, and (iii) memory-aware filtering.
arXiv Detail & Related papers (2025-03-29T14:27:02Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources [0.0]
Multi-source multi-hop question answering (QA) represents a challenging task in natural language processing.<n>Existing methods often suffer from cascading errors, insufficient handling of knowledge conflicts, and computational inefficiency.<n>We propose Adaptive Multi-source Knowledge-Oriented Reasoning (AMKOR) to dynamically fuse parametric and retrieved knowledge.
arXiv Detail & Related papers (2025-02-09T16:06:43Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)<n>By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.<n> Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering [47.29580414645626]
RopMura is a novel multi-agent system that integrates multiple knowledge bases into a unified RAG-based agent.<n>RopMura features two key components: a router that intelligently selects the most relevant agents based on knowledge boundaries and a planner that decomposes complex multi-hop queries into manageable steps.
arXiv Detail & Related papers (2025-01-14T03:25:26Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
We propose a novel multimodal task-oriented dialog system named MDS-S2.
It acquires the context related attribute and relation knowledge from the knowledge base.
We also devise a set of latent query variables to distill the semantic information from the composed response representation.
arXiv Detail & Related papers (2023-05-17T06:33:26Z) - Joint Answering and Explanation for Visual Commonsense Reasoning [46.44588492897933]
Visual Commonsense Reasoning endeavors to pursue a more high-level visual comprehension.
It is composed of two indispensable processes: question answering over a given image and rationale inference for answer explanation.
We present a plug-and-play knowledge distillation enhanced framework to couple the question answering and rationale inference processes.
arXiv Detail & Related papers (2022-02-25T11:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.