Credible Plan-Driven RAG Method for Multi-Hop Question Answering
- URL: http://arxiv.org/abs/2504.16787v2
- Date: Fri, 01 Aug 2025 06:44:02 GMT
- Title: Credible Plan-Driven RAG Method for Multi-Hop Question Answering
- Authors: Ningning Zhang, Chi Zhang, Zhizhong Tan, Xingxing Yang, Weiping Deng, Wenyong Wang,
- Abstract summary: We propose PAR-RAG (Plan-then-Act-and-Review RAG), a novel framework inspired by the PDCA (Plan-Do-Check-Act) cycle.<n>Par-RAG selects exemplars matched by the semantic complexity of the current question to guide complexity-aware top-down planning.<n>A dual-verification mechanism evaluates and corrects intermediate errors, ensuring that the reasoning process remains factually grounded.
- Score: 2.5772544412212985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-hop question answering (QA) presents significant challenges for retrieval-augmented generation (RAG), particularly in decomposing complex queries into reliable reasoning paths and managing error propagation. Existing RAG methods often suffer from deviations in reasoning paths and cumulative errors in intermediate steps, reducing the fidelity of the final answer. To address these limitations, we propose PAR-RAG (Plan-then-Act-and-Review RAG), a novel framework inspired by the PDCA (Plan-Do-Check-Act) cycle, to enhance both the accuracy and factual consistency in multi-hop question answering. Specifically, PAR-RAG selects exemplars matched by the semantic complexity of the current question to guide complexity-aware top-down planning, resulting in more precise and coherent multi-step reasoning trajectories. This design mitigates reasoning drift and reduces the risk of suboptimal path convergence, a common issue in existing RAG approaches. Furthermore, a dual-verification mechanism evaluates and corrects intermediate errors, ensuring that the reasoning process remains factually grounded. Experimental results on various QA benchmarks demonstrate that PAR-RAG outperforms existing state-of-the-art methods, validating its effectiveness in both performance and reasoning robustness.
Related papers
- PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning [57.89188317734747]
PrismRAG trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages.<n>It instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions.
arXiv Detail & Related papers (2025-07-25T00:15:31Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - ComposeRAG: A Modular and Composable RAG for Corpus-Grounded Multi-Hop Question Answering [42.238086712267396]
ComposeRAG is a novel modular abstraction that decomposes RAG pipelines into atomic, composable modules.<n>It consistently outperforms strong baselines in both accuracy and grounding fidelity.<n>Its verification-first design reduces ungrounded answers by over 10% in low-quality retrieval settings.
arXiv Detail & Related papers (2025-05-30T21:10:30Z) - MA-RAG: Multi-Agent Retrieval-Augmented Generation via Collaborative Chain-of-Thought Reasoning [43.66966457772646]
MA-RAG orchestrates a collaborative set of specialized AI agents to tackle each stage of the RAG pipeline with task-aware reasoning.<n>Our design allows fine-grained control over information flow without any model fine-tuning.<n>This modular and reasoning-driven architecture enables MA-RAG to deliver robust, interpretable results.
arXiv Detail & Related papers (2025-05-26T15:05:18Z) - DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering [45.205396863347964]
Multi-Hop Question Answering (MHQA) tasks pose challenges in orchestrating multi-step reasoning across diverse knowledge domains.<n>We propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval.
arXiv Detail & Related papers (2025-04-25T10:43:53Z) - AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG [61.28113271728859]
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation.<n>Existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content.<n>We propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment steps.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - a1: Steep Test-time Scaling Law via Environment Augmented Generation [45.19240207975418]
Environment Augmented Generation (EAG) is a framework that enhances large language models' reasoning through real-time environmental feedback.<n>EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback and branching exploration.<n>A1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks.
arXiv Detail & Related papers (2025-04-20T12:55:59Z) - MHTS: Multi-Hop Tree Structure Framework for Generating Difficulty-Controllable QA Datasets for RAG Evaluation [5.525151548786079]
Existing RAG benchmarks often overlook query difficulty, leading to inflated performance on simpler questions and unreliable evaluations.<n>We propose MHTS (Multi-Hop Tree Structure), a novel dataset synthesis framework that controls multi-hop reasoning complexity by leveraging a multi-hop tree structure to generate logically connected, multi-chunk queries.
arXiv Detail & Related papers (2025-03-29T06:26:01Z) - PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving [89.60370366013142]
We propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents.<n>Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms.
arXiv Detail & Related papers (2025-02-22T06:21:56Z) - DeepRAG: Thinking to Retrieve Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)<n>By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.<n> Experiments show that DeepRAG improves retrieval efficiency and boosts answer accuracy by 26.4%, demonstrating its effectiveness in enhancing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.<n>A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.<n>To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data.
We observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy.
We propose CFPRM, a simple yet effective coarse-to-fine strategy for detecting redundant steps.
arXiv Detail & Related papers (2025-01-23T12:44:45Z) - Plan*RAG: Efficient Test-Time Planning for Retrieval Augmented Generation [20.5047654554575]
Plan*RAG is a framework that enables structured multi-hop reasoning in retrieval-augmented generation (RAG)<n>Plan*RAG consistently achieves improvements over recently proposed methods such as RQ-RAG and Self-RAG.
arXiv Detail & Related papers (2024-10-28T05:35:04Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Planning in Markov Decision Processes with Gap-Dependent Sample
Complexity [48.98199700043158]
We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algorithm for planning in a Markov Decision Process.
We prove an upper bound on the number of calls to the generative models needed for MDP-GapE to identify a near-optimal action with high probability.
arXiv Detail & Related papers (2020-06-10T15:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.