論文の概要: Towards Adaptive Software Agents for Debugging
- arxiv url: http://arxiv.org/abs/2504.18316v1
- Date: Fri, 25 Apr 2025 12:48:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.766574
- Title: Towards Adaptive Software Agents for Debugging
- Title(参考訳): デバッグのための適応型ソフトウェアエージェントを目指して
- Authors: Yacine Majdoub, Eya Ben Charrada, Haifa Touati,
- Abstract要約: 本稿では,エージェントの数とその役割を動的に決定する適応型エージェント設計を提案する。
最初の評価では、適応設計では、生成されるエージェントの数はバグのあるコードの複雑さに依存することが示されている。
治療効果は, ワンショットプロンプトよりも平均11%改善した。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using multiple agents was found to improve the debugging capabilities of Large Language Models. However, increasing the number of LLM-agents has several drawbacks such as increasing the running costs and rising the risk for the agents to lose focus. In this work, we propose an adaptive agentic design, where the number of agents and their roles are determined dynamically based on the characteristics of the task to be achieved. In this design, the agents roles are not predefined, but are generated after analyzing the problem to be solved. Our initial evaluation shows that, with the adaptive design, the number of agents that are generated depends on the complexity of the buggy code. In fact, for simple code with mere syntax issues, the problem was usually fixed using one agent only. However, for more complex problems, we noticed the creation of a higher number of agents. Regarding the effectiveness of the fix, we noticed an average improvement of 11% compared to the one-shot prompting. Given these promising results, we outline future research directions to improve our design for adaptive software agents that can autonomously plan and conduct their software goals.
- Abstract(参考訳): 複数のエージェントを使用することで、大規模言語モデルのデバッグ機能が改善された。
しかし、LSMエージェントの数を増やすことは、ランニングコストの増加や、エージェントがフォーカスを失うリスクの増加など、いくつかの欠点がある。
本研究では,タスクの特性に基づいてエージェントの数とその役割を動的に決定する適応型エージェント設計を提案する。
この設計では、エージェントの役割は事前に定義されていないが、解決すべき問題を解析して生成される。
最初の評価では、適応設計では、生成されるエージェントの数はバグのあるコードの複雑さに依存することが示されている。
実際、単純な構文問題のあるコードの場合、通常は1つのエージェントのみを使用して修正された。
しかし、より複雑な問題に対して、より多くのエージェントが生成されることに気づいた。
治療効果は, ワンショットプロンプトよりも平均11%改善した。
これらの有望な結果を踏まえ、我々は、ソフトウェア目標を自律的に計画し実行できる適応型ソフトウェアエージェントの設計を改善するための今後の研究方針を概説する。
関連論文リスト
- MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
我々はマルチエージェント・マルチモデル推論を生成にまで拡張し、特に改良による忠実度の向上を図っている。
我々は,各サブタスクに対して固有の評価を設計し,マルチエージェント(複数インスタンス)とマルチモデル(多変数LPMタイプ)の両方がエラー検出やクオリティクスに有効であることを示す。
我々はこれらの知見を、マルチエージェント・マルチモデル・リファインメント(MAMM-Refinement)と呼ばれる最終的な"レシピ"に統合し、マルチエージェント・マルチモデルコラボレーションがパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2025-03-19T14:46:53Z) - AppAgentX: Evolving GUI Agents as Proficient Smartphone Users [34.70342284525283]
本稿では,インテリジェンスと柔軟性を維持しつつ,操作効率を向上させるGUIエージェントの進化的フレームワークを提案する。
本手法は,エージェントのタスク実行履歴を記録するメモリ機構を組み込んだものである。
複数のベンチマークタスクに対する実験結果から,本手法は既存の手法よりも効率と精度が優れていることが示された。
論文 参考訳(メタデータ) (2025-03-04T04:34:09Z) - Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents [31.126001253902416]
本研究は,LLMエージェントの欠陥の同定と検出に焦点を当てた最初の研究である。
StackOverflowから6,854件の関連記事を収集し分析し、8種類のエージェント欠陥を定義しました。
以上の結果から,Agentableの総合精度は88.79%,リコール率は91.03%であった。
論文 参考訳(メタデータ) (2024-12-24T11:54:14Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは、特殊エージェントをマルチエージェントシステムに自動的に拡張するジェネリックメソッドである。
EvoAgent は LLM エージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - Goal-Directed Design Agents: Integrating Visual Imitation with One-Step
Lookahead Optimization for Generative Design [0.0]
このノートは、設計を逐次生成するための学習戦略を強化することができる目標指向エージェントを開発するために、DLAgentsの上に構築されている。
ゴール指向のDLAgentは、データから学んだ人間の戦略と、目的関数の最適化を利用することができる。
これは、学習した設計戦略を強化するだけでなく、目に見えない設計問題にも適応できる、フィードバックを効率的に利用できるデザインエージェントフレームワークを示している。
論文 参考訳(メタデータ) (2021-10-07T07:13:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。