ThreMoLIA: Threat Modeling of Large Language Model-Integrated Applications
- URL: http://arxiv.org/abs/2504.18369v1
- Date: Fri, 25 Apr 2025 14:11:42 GMT
- Title: ThreMoLIA: Threat Modeling of Large Language Model-Integrated Applications
- Authors: Felix Viktor Jedrzejewski, Davide Fucci, Oleksandr Adamov,
- Abstract summary: Large Language Models (LLMs) are currently being integrated into industrial software applications.<n>Threat modeling is commonly used to identify these threats and suggest mitigations.<n>Our goals are to 1) provide a method for performing threat modeling for LIAs early in their lifecycle, (2) develop a threat modeling tool that integrates existing threat models, and (3) ensure high-quality threat modeling.
- Score: 20.010260124984654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are currently being integrated into industrial software applications to help users perform more complex tasks in less time. However, these LLM-Integrated Applications (LIA) expand the attack surface and introduce new kinds of threats. Threat modeling is commonly used to identify these threats and suggest mitigations. However, it is a time-consuming practice that requires the involvement of a security practitioner. Our goals are to 1) provide a method for performing threat modeling for LIAs early in their lifecycle, (2) develop a threat modeling tool that integrates existing threat models, and (3) ensure high-quality threat modeling. To achieve the goals, we work in collaboration with our industry partner. Our proposed way of performing threat modeling will benefit industry by requiring fewer security experts' participation and reducing the time spent on this activity. Our proposed tool combines LLMs and Retrieval Augmented Generation (RAG) and uses sources such as existing threat models and application architecture repositories to continuously create and update threat models. We propose to evaluate the tool offline -- i.e., using benchmarking -- and online with practitioners in the field. We conducted an early evaluation using ChatGPT on a simple LIA and obtained results that encouraged us to proceed with our research efforts.
Related papers
- Securing Agentic AI: A Comprehensive Threat Model and Mitigation Framework for Generative AI Agents [0.0]
This paper introduces a comprehensive threat model tailored specifically for GenAI agents.
Research work identifies 9 primary threats and organizes them across five key domains.
arXiv Detail & Related papers (2025-04-28T16:29:24Z) - OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities [0.0]
We demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations.<n>We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement.<n>We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats.
arXiv Detail & Related papers (2025-02-18T19:33:14Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.
Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [298.05093528230753]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.<n>We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - ThreatModeling-LLM: Automating Threat Modeling using Large Language Models for Banking System [6.960015473151946]
ThreatModeling-LLM is a framework that automates threat modeling for banking systems using Large Language Models.
It operates in three stages: 1) dataset creation, 2) prompt engineering and 3) model fine-tuning.
arXiv Detail & Related papers (2024-11-26T02:57:28Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
Large Language Models (LLMs) have revolutionized various applications by providing advanced natural language processing capabilities.
This paper explores the threat modeling and risk analysis specifically tailored for LLM-powered applications.
arXiv Detail & Related papers (2024-06-16T16:43:58Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)<n>We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.<n>We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard
Security Attacks [67.86285142381644]
Recent advances in instruction-following large language models amplify the dual-use risks for malicious purposes.
Dual-use is difficult to prevent as instruction-following capabilities now enable standard attacks from computer security.
We show that instruction-following LLMs can produce targeted malicious content, including hate speech and scams.
arXiv Detail & Related papers (2023-02-11T15:57:44Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.