論文の概要: Generative Induction of Dialogue Task Schemas with Streaming Refinement and Simulated Interactions
- arxiv url: http://arxiv.org/abs/2504.18474v1
- Date: Fri, 25 Apr 2025 16:29:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.84605
- Title: Generative Induction of Dialogue Task Schemas with Streaming Refinement and Simulated Interactions
- Title(参考訳): ストリームリファインメントとシミュレートによる対話タスクスキーマの生成
- Authors: James D. Finch, Yasasvi Josyula, Jinho D. Choi,
- Abstract要約: スロットインジェクション(SSI)は、手動による介入なしに対話データからキー情報スロットを自動的に識別するために必要である。
本稿では、テキスト生成タスクとしてSSIを定式化する、新しい最先端(SoTA)アプローチを提案する。
- 参考スコア(独自算出の注目度): 10.781063445675423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In task-oriented dialogue (TOD) systems, Slot Schema Induction (SSI) is essential for automatically identifying key information slots from dialogue data without manual intervention. This paper presents a novel state-of-the-art (SoTA) approach that formulates SSI as a text generation task, where a language model incrementally constructs and refines a slot schema over a stream of dialogue data. To develop this approach, we present a fully automatic LLM-based TOD simulation method that creates data with high-quality state labels for novel task domains. Furthermore, we identify issues in SSI evaluation due to data leakage and poor metric alignment with human judgment. We resolve these by creating new evaluation data using our simulation method with human guidance and correction, as well as designing improved evaluation metrics. These contributions establish a foundation for future SSI research and advance the SoTA in dialogue understanding and system development.
- Abstract(参考訳): タスク指向対話(TOD)システムでは、SSI(Slot Schema Injection)は手動の介入なしに対話データからキー情報スロットを自動的に識別するために必要である。
本稿では,SSIをテキスト生成タスクとして定式化し,言語モデルを段階的に構築し,対話データのストリーム上でスロットスキーマを洗練する,新しい最先端(SoTA)アプローチを提案する。
そこで本研究では,新しいタスクドメインに対して,高品質な状態ラベルを持つデータを生成する,完全に自動LLMベースのTODシミュレーション手法を提案する。
さらに,データ漏洩によるSSI評価の問題点と,人的判断との整合性について検討した。
本研究では,人間の指導と修正によるシミュレーション手法を用いて新しい評価データを作成するとともに,改善された評価指標を設計することで解決する。
これらの貢献は将来のSSI研究の基礎を確立し、対話理解とシステム開発においてSoTAを前進させる。
関連論文リスト
- Transforming Slot Schema Induction with Generative Dialogue State Inference [14.06505399101404]
スロットインジェクション(SSI)は、ラベルのない対話データからスロットを自動的に誘導することを目的としている。
本手法は,対話状態を表すための高品質な候補情報を検出する。
MultiWOZデータセットとSGDデータセットの実験的比較により、生成対話状態推論(Generative Dialogue State Inference, GenDSI)が従来の最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-03T02:41:10Z) - Efficient Data Generation for Source-grounded Information-seeking Dialogs: A Use Case for Meeting Transcripts [10.829227084902428]
本稿では,Large Language Models (LLMs) を用いたソースグラウンド情報検索ダイアログにおけるデータ生成の実現可能性と有効性について検討する。
私たちはMISeD -- Meeting Information Seeking Dialogsデータセットを作ります。
MISeDの微調整は、完全な手動データによる微調整に匹敵する応答生成品質を提供すると同時に、属性品質を改善し、時間と労力を削減する。
論文 参考訳(メタデータ) (2024-05-02T09:35:06Z) - Simulating Task-Oriented Dialogues with State Transition Graphs and Large Language Models [16.94819621353007]
SynTODは、エンドツーエンドのタスク指向対話(TOD)システムを開発するための新しい合成データ生成手法である。
大規模言語モデルを用いたランダムウォークと応答シミュレーションにより多様な構造化された会話を生成する。
実験では,グラフ誘導応答シミュレーションを用いて意図分類,スロット充填,応答関連性を大幅に改善した。
論文 参考訳(メタデータ) (2024-04-23T06:23:34Z) - Injecting linguistic knowledge into BERT for Dialogue State Tracking [60.42231674887294]
本稿では,教師なしの枠組みを用いて言語知識を抽出する手法を提案する。
次に、この知識を用いて、対話状態追跡(DST)タスクにおけるBERTの性能と解釈可能性を高める。
このフレームワークを様々なDSTタスクでベンチマークし、精度の顕著な改善を観察する。
論文 参考訳(メタデータ) (2023-11-27T08:38:42Z) - InstructTODS: Large Language Models for End-to-End Task-Oriented
Dialogue Systems [60.53276524369498]
大規模言語モデル(LLM)は自然言語処理(NLP)における多様なタスクに使用されている。
InstructTODSは、ゼロショットのタスク指向対話システムのための新しいフレームワークである。
InstructTODSは、ユーザの意図を動的クエリにシームレスに翻訳するプロキシの信念状態を生成する。
論文 参考訳(メタデータ) (2023-10-13T06:36:26Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - Turning Flowchart into Dialog: Augmenting Flowchart-grounded
Troubleshooting Dialogs via Synthetic Data Generation [50.06143883455979]
Flowchart-grounded trouble shooting dialogue (FTD) システムは、特定のドメインにおけるユーザの問題を診断するフローチャートの指示に従う。
多様な合成ダイアログデータを大規模に生成する計画ベース合成データ生成手法を提案する。
論文 参考訳(メタデータ) (2023-05-02T11:08:27Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Quick Starting Dialog Systems with Paraphrase Generation [0.0]
本稿では,既存の事例からより多くのデータを人工的に生成することで,対話エージェント作成のコストと労力を削減する手法を提案する。
提案手法は,人間の努力がほとんどないダイアログシステムを起動し,実際のエンドユーザーとの対話を可能にするのに十分なレベルの性能を実現する。
論文 参考訳(メタデータ) (2022-04-06T02:35:59Z) - A Simple But Effective Approach to n-shot Task-Oriented Dialogue
Augmentation [32.43362825854633]
本稿では,タスク指向対話を完全自動で生成するフレームワークを提案する。
我々のフレームワークはタスク指向対話における各ターンペアは特定の機能を持つという単純な考え方を用いています。
いくつかのドメインの微調整シナリオの大幅な改善を観察します。
論文 参考訳(メタデータ) (2021-02-27T18:55:12Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
本稿では,シンプルで効果的な発話タグ付け手法と双方向言語モデルを用いたマルチタスク学習モデルを提案する。
提案手法は,入力対話コンテキストシーケンスが長い場合に,ベースラインの性能が著しく低下する,という問題を解決する。
本実験では,MultiWOZ 2.0データセットにおいて,ベースラインに対して7.03%の相対的改善を実現し,新しい最先端のジョイントゴール精度を52.04%に設定した。
論文 参考訳(メタデータ) (2020-04-29T11:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。