The Philosophic Turn for AI Agents: Replacing centralized digital rhetoric with decentralized truth-seeking
- URL: http://arxiv.org/abs/2504.18601v1
- Date: Thu, 24 Apr 2025 19:34:43 GMT
- Title: The Philosophic Turn for AI Agents: Replacing centralized digital rhetoric with decentralized truth-seeking
- Authors: Philipp Koralus,
- Abstract summary: In the face of AI technology, individuals will increasingly rely on AI agents to navigate life's growing complexities.<n>This paper addresses a fundamental dilemma posed by AI decision-support systems: the risk of either becoming overwhelmed by complex decisions, or having autonomy compromised.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the face of rapidly advancing AI technology, individuals will increasingly rely on AI agents to navigate life's growing complexities, raising critical concerns about maintaining both human agency and autonomy. This paper addresses a fundamental dilemma posed by AI decision-support systems: the risk of either becoming overwhelmed by complex decisions, thus losing agency, or having autonomy compromised by externally controlled choice architectures reminiscent of ``nudging'' practices. While the ``nudge'' framework, based on the use of choice-framing to guide individuals toward presumed beneficial outcomes, initially appeared to preserve liberty, at AI-driven scale, it threatens to erode autonomy. To counteract this risk, the paper proposes a philosophic turn in AI design. AI should be constructed to facilitate decentralized truth-seeking and open-ended inquiry, mirroring the Socratic method of philosophical dialogue. By promoting individual and collective adaptive learning, such AI systems would empower users to maintain control over their judgments, augmenting their agency without undermining autonomy. The paper concludes by outlining essential features for autonomy-preserving AI systems, sketching a path toward AI systems that enhance human judgment rather than undermine it.
Related papers
- Artificial Intelligence (AI) and the Relationship between Agency, Autonomy, and Moral Patiency [0.0]
We argue that while current AI systems are highly sophisticated, they lack genuine agency and autonomy.<n>We do not rule out the possibility of future systems that could achieve a limited form of artificial moral agency without consciousness.
arXiv Detail & Related papers (2025-04-11T03:48:40Z) - Alignment, Agency and Autonomy in Frontier AI: A Systems Engineering Perspective [0.0]
Concepts of alignment, agency, and autonomy have become central to AI safety, governance, and control.<n>This paper traces the historical, philosophical, and technical evolution of these concepts, emphasizing how their definitions influence AI development, deployment, and oversight.
arXiv Detail & Related papers (2025-02-20T21:37:20Z) - Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
This paper argues that fully autonomous AI agents should not be developed.
In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels.
Our analysis reveals that risks to people increase with the autonomy of a system.
arXiv Detail & Related papers (2025-02-04T19:00:06Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - AI and the Sense of Self [0.0]
We focus on the cognitive sense of "self" and its role in autonomous decision-making leading to responsible behaviour.
Authors hope to make a case for greater research interest in building richer computational models of AI agents with a sense of self.
arXiv Detail & Related papers (2022-01-07T10:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.