ECG Identity Authentication in Open-set with Multi-model Pretraining and Self-constraint Center & Irrelevant Sample Repulsion Learning
- URL: http://arxiv.org/abs/2504.18608v1
- Date: Fri, 25 Apr 2025 12:18:51 GMT
- Title: ECG Identity Authentication in Open-set with Multi-model Pretraining and Self-constraint Center & Irrelevant Sample Repulsion Learning
- Authors: Mingyu Dong, Zhidong Zhao, Hao Wang, Yefei Zhang, Yanjun Deng,
- Abstract summary: We propose a robust ECG identity authentication system that maintains high performance even in open-set settings.<n>Our method achieves 99.83% authentication accuracy and maintains a False Accept Rate as low as 5.39% in the presence of open-set samples.
- Score: 6.106335826823355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) signal exhibits inherent uniqueness, making it a promising biometric modality for identity authentication. As a result, ECG authentication has gained increasing attention in recent years. However, most existing methods focus primarily on improving authentication accuracy within closed-set settings, with limited research addressing the challenges posed by open-set scenarios. In real-world applications, identity authentication systems often encounter a substantial amount of unseen data, leading to potential security vulnerabilities and performance degradation. To address this issue, we propose a robust ECG identity authentication system that maintains high performance even in open-set settings. Firstly, we employ a multi-modal pretraining framework, where ECG signals are paired with textual reports derived from their corresponding fiducial features to enhance the representational capacity of the signal encoder. During fine-tuning, we introduce Self-constraint Center Learning and Irrelevant Sample Repulsion Learning to constrain the feature distribution, ensuring that the encoded representations exhibit clear decision boundaries for classification. Our method achieves 99.83% authentication accuracy and maintains a False Accept Rate as low as 5.39% in the presence of open-set samples. Furthermore, across various open-set ratios, our method demonstrates exceptional stability, maintaining an Open-set Classification Rate above 95%.
Related papers
- Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.<n>Existing research predominantly concentrates on the security of general large language models.<n>This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
We propose a simple failure detection framework to unify and facilitate classification with rejection under both covariate and semantic shifts.<n>Our key insight is that by separating and consolidating failure-specific reliability knowledge with low-rank adapters, we can enhance the failure detection ability effectively and flexibly.
arXiv Detail & Related papers (2025-04-20T09:20:55Z) - Coverage-Guaranteed Speech Emotion Recognition via Calibrated Uncertainty-Adaptive Prediction Sets [0.0]
Speech Emotion Recognition can detect early negative emotions to reduce accidents.<n>Traditional methods face overfitting and miscalibration issues.<n>This paper proposes a risk management framework ensuring statistically rigorous correctness coverage for test data.
arXiv Detail & Related papers (2025-03-24T12:26:28Z) - TransECG: Leveraging Transformers for Explainable ECG Re-identification Risk Analysis [3.0116875872058584]
We introduce TransECG, a Vision Transformer (ViT)-based method to pinpoint critical ECG segments associated with re-identification tasks like gender, age, and participant ID.<n>Our approach demonstrates high accuracy (89.9% for gender, 89.9% for age, and 88.6% for ID re-identification) across four real-world datasets with 87 participants.
arXiv Detail & Related papers (2025-03-11T07:37:56Z) - Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition [58.98052764581606]
We develop a novel uncertainty-Aware label refineMent on hYpergraphs (AMY) method.<n>For local training, each local model consists of a backbone, an uncertainty estimation (UE) block, and an expression classification (EC) block.<n>A personalized uncertainty estimator is then introduced to estimate reliable uncertainty weights of samples in the local client.
arXiv Detail & Related papers (2025-01-03T13:59:21Z) - Leveraging Ensemble-Based Semi-Supervised Learning for Illicit Account Detection in Ethereum DeFi Transactions [0.0]
Decentralized Finance (DeFi) has introduced significant security risks, including the proliferation of illicit accounts.<n>Traditional detection methods are limited by the scarcity of labeled data and the evolving tactics of malicious actors.<n>We propose a novel Self-Learning Ensemble-based Illicit account Detection framework to address these challenges.
arXiv Detail & Related papers (2024-12-03T12:03:13Z) - Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security [0.0]
We introduce a novel multi-modal biometric authentication system that integrates facial, vocal, and signature data to enhance security measures.
Our model architecture incorporates dual shared layers alongside modality-specific enhancements for comprehensive feature extraction.
Our approach demonstrates significant improvements in authentication accuracy and robustness, paving the way for advanced secure identity verification solutions.
arXiv Detail & Related papers (2024-11-04T14:27:10Z) - Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination [1.183049138259841]
Person re-identification (Re-ID) is a challenging task that involves identifying the same person across different camera views in surveillance systems.<n>In this paper, a new approach is introduced that enhances the capability of ReID models through the Uncertain Feature Fusion Method (UFFM) and Auto-weighted Measure Combination (AMC)<n>Our method significantly improves Rank@1 accuracy and Mean Average Precision (mAP) when evaluated on person re-identification datasets.
arXiv Detail & Related papers (2024-05-02T09:09:48Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
We propose a machine learning pipeline called U-PASS tailored for clinical applications that incorporates uncertainty estimation at every stage of the process.
We apply our uncertainty-guided deep learning pipeline to the challenging problem of sleep staging and demonstrate that it systematically improves performance at every stage.
arXiv Detail & Related papers (2023-06-07T08:27:36Z) - Learning for Transductive Threshold Calibration in Open-World Recognition [83.35320675679122]
We introduce OpenGCN, a Graph Neural Network-based transductive threshold calibration method with enhanced robustness and adaptability.
Experiments across open-world visual recognition benchmarks validate OpenGCN's superiority over existing posthoc calibration methods for open-world threshold calibration.
arXiv Detail & Related papers (2023-05-19T23:52:48Z) - Model-Agnostic Few-Shot Open-Set Recognition [36.97433312193586]
We tackle the Few-Shot Open-Set Recognition (FSOSR) problem.
We focus on developing model-agnostic inference methods that can be plugged into any existing model.
We introduce an Open Set Transductive Information Maximization method OSTIM.
arXiv Detail & Related papers (2022-06-18T16:27:59Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.