Qubit-efficient quantum chemistry with the ADAPT variational quantum eigensolver and double unitary downfolding
- URL: http://arxiv.org/abs/2504.18683v1
- Date: Fri, 25 Apr 2025 20:24:07 GMT
- Title: Qubit-efficient quantum chemistry with the ADAPT variational quantum eigensolver and double unitary downfolding
- Authors: Harjeet Singh, Luke W. Bertels, Daniel Claudino, Sophia E. Economou, Edwin Barnes, Nicholas P. Bauman, Karol Kowalski, Nicholas J. Mayhall,
- Abstract summary: We benchmark the ability of DUCC effective Hamiltonians to recover dynamical correlation energy outside of an active space.<n>We observe similar convergence of the ground state as compared to bare active space Hamiltonians, demonstrating that DUCC Hamiltonians provide increased accuracy without increasing the load on the quantum processor.
- Score: 0.7361163215281896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we combine the recently developed double unitary coupled cluster (DUCC) theory with the adaptive, problem-tailored variational quantum eigensolver (ADAPT-VQE) to explore accuracy of unitary downfolded Hamiltonians for quantum simulation of chemistry. We benchmark the ability of DUCC effective Hamiltonians to recover dynamical correlation energy outside of an active space. We consider the effects of strong correlation, commutator truncation, higher-body terms, and approximate external amplitudes on the accuracy of these effective Hamiltonians. When combining these DUCC Hamiltonians with ADAPT-VQE, we observe similar convergence of the ground state as compared to bare active space Hamiltonians, demonstrating that DUCC Hamiltonians provide increased accuracy without increasing the load on the quantum processor.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Weak coupling limit for quantum systems with unbounded weakly commuting system operators [50.24983453990065]
This work is devoted to a rigorous analysis of the weak coupling limit (WCL) for the reduced dynamics of an open infinite-dimensional quantum system interacting with electromagnetic field or a reservoir formed by Fermi or Bose particles.<n>We derive in the weak coupling limit the reservoir statistics, which is determined by whose terms in the multi-point correlation functions of the reservoir are non-zero in the WCL.<n>We prove that the resulting reduced system dynamics converges to unitary dynamics with a modified Hamiltonian which can be interpreted as a Lamb shift to the original Hamiltonian.
arXiv Detail & Related papers (2025-05-13T05:32:34Z) - Quantum Averaging for High-Fidelity Quantum Logic Gates [0.0]
We present a two-timescale quantum averaging theory (QAT) for analytically modeling unitary dynamics in driven quantum systems.<n>We demonstrate the high precision achievable by applying this analytic technique to model a high-fidelity two-qubit quantum gate.<n>The results rapidly converge with numerical calculations of a fast-entangling Molmer-Sorensen trapped-ion-qubit gate.
arXiv Detail & Related papers (2025-03-11T20:56:45Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - A qubit-ADAPT Implementation for H$_2$ Molecules using an Explicitly
Correlated Basis [28.279056210896716]
In the era of non-fault tolerant quantum devices, ADAPT algorithms are considered to be a promising approach for assisting classical machines with finding solution on computationally hard problems.
In this work, the ADAPT algorithm has been combined with a first-quantized formulation for the hydrogen molecule in Born-Oppenheimer approximation.
arXiv Detail & Related papers (2023-08-14T16:44:29Z) - Real-time two-axis control of a spin qubit [23.355961895855337]
We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two fluctuating Hamiltonian parameters.
Powered by a field-programmable gate array (FPGA), the quantum control electronics estimates the Overhauser field gradient between the two electrons in real time.
arXiv Detail & Related papers (2023-08-03T20:07:00Z) - Effective Hamiltonian theory of open quantum systems at strong coupling [0.0]
We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective Hamiltonian models.
Examples in this work include canonical models for quantum thermalization, charge and energy transport at the nanoscale, performance bounds of quantum thermodynamical machines.
arXiv Detail & Related papers (2022-11-10T17:10:33Z) - Coupled Cluster Downfolding Methods: the effect of double commutator
terms on the accuracy of ground-state energies [0.0]
We discuss the impact of higher-order terms originating in double commutators on the appearance of the downfolded Hamiltonians.
We demonstrate the efficiency of the many-body expansions involving single and double commutators for the unitary extension of the downfolded Hamiltonians.
arXiv Detail & Related papers (2021-10-22T21:49:45Z) - Hamiltonian Model for Fault Tolerant Singlet-Like Excitation: First
Principles Approach [0.0]
We investigate the reduced state of two qubits coupled to each other via a common heat bath of linear harmonics.
We search for evidence of fault-tolerant excited qubit states.
We emphasize the central role of the Lambshift as an agent responsible for fault tolerant excitations.
arXiv Detail & Related papers (2021-05-20T14:14:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.