論文の概要: TransparentGS: Fast Inverse Rendering of Transparent Objects with Gaussians
- arxiv url: http://arxiv.org/abs/2504.18768v2
- Date: Thu, 01 May 2025 07:57:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.981233
- Title: TransparentGS: Fast Inverse Rendering of Transparent Objects with Gaussians
- Title(参考訳): TransparentGS: ガウスによる透明物体の高速逆レンダリング
- Authors: Letian Huang, Dongwei Ye, Jialin Dan, Chengzhi Tao, Huiwen Liu, Kun Zhou, Bo Ren, Yuanqi Li, Yanwen Guo, Jie Guo,
- Abstract要約: 3D-GSに基づく透明物体のための高速逆レンダリングパイプラインであるTransparentGSを提案する。
我々はガウス光場プローブ(GaussProbe)を利用して、周囲の光と近傍のコンテンツの両方を統一された枠組みで符号化する。
複雑な環境から透明な物体を回収する際のアプローチの速度と精度について実験を行った。
- 参考スコア(独自算出の注目度): 35.444290579981455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of neural and Gaussian-based radiance field methods has led to considerable advancements in novel view synthesis and 3D object reconstruction. Nonetheless, specular reflection and refraction continue to pose significant challenges due to the instability and incorrect overfitting of radiance fields to high-frequency light variations. Currently, even 3D Gaussian Splatting (3D-GS), as a powerful and efficient tool, falls short in recovering transparent objects with nearby contents due to the existence of apparent secondary ray effects. To address this issue, we propose TransparentGS, a fast inverse rendering pipeline for transparent objects based on 3D-GS. The main contributions are three-fold. Firstly, an efficient representation of transparent objects, transparent Gaussian primitives, is designed to enable specular refraction through a deferred refraction strategy. Secondly, we leverage Gaussian light field probes (GaussProbe) to encode both ambient light and nearby contents in a unified framework. Thirdly, a depth-based iterative probes query (IterQuery) algorithm is proposed to reduce the parallax errors in our probe-based framework. Experiments demonstrate the speed and accuracy of our approach in recovering transparent objects from complex environments, as well as several applications in computer graphics and vision.
- Abstract(参考訳): ニューラルおよびガウスに基づく放射場法の出現は、新しいビュー合成と3次元オブジェクト再構成の大幅な進歩をもたらした。
それでも、スペクトル反射と屈折は、高周波光の変動に対する放射場の不安定性と不正なオーバーフィッティングのために、大きな課題を生じ続けている。
現在、3Dガウススメッティング(3D-GS)は強力で効率的なツールでありながら、透明な物体を近くの物質で回収するのに不足している。
この問題に対処するため、3D-GSに基づく透明オブジェクトのための高速逆レンダリングパイプラインであるTransparentGSを提案する。
主な貢献は3倍である。
第一に、透明なガウス原始体である透明な物体の効率的な表現は、遅延屈折法によってスペクトル屈折を可能にするように設計されている。
第2に、ガウス光場プローブ(GaussProbe)を用いて、周囲光と周辺光の両方を統一された枠組みで符号化する。
第3に,提案フレームワークのパララックス誤差を低減するために,深度に基づく反復型プローブクエリ (IterQuery) アルゴリズムを提案する。
実験では、複雑な環境から透明な物体を回収する際のアプローチの速度と精度、およびコンピュータグラフィックスとビジョンにおけるいくつかの応用を実証した。
関連論文リスト
- TSGS: Improving Gaussian Splatting for Transparent Surface Reconstruction via Normal and De-lighting Priors [39.60777069381983]
我々は、幾何学学習と外観改善を分離する新しいフレームワークであるTransparent Surface Gaussian Splatting (TSGS)を紹介した。
幾何学学習の段階では、TSGSは、表面を正確に表現するために、スペクトル抑圧された入力を用いて幾何学に焦点を当てる。
深度推定を強化するため、TSGSは第1面の深度抽出法を採用している。
論文 参考訳(メタデータ) (2025-04-17T10:00:09Z) - GlossGau: Efficient Inverse Rendering for Glossy Surface with Anisotropic Spherical Gaussian [4.5442067197725]
GlossGauは、バニラ3D-GSに匹敵するトレーニングとレンダリング速度を維持しながら、光沢のある表面でシーンを再構築する効率的な逆レンダリングフレームワークである。
実験によりGrossGauは、光沢のある表面を持つデータセット上で、競争力や優れた再構築を実現することが示された。
論文 参考訳(メタデータ) (2025-02-19T22:20:57Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - RNG: Relightable Neural Gaussians [19.197099019727826]
硬表面とソフト境界の両方で物体を照らすことができる新しい3DGSベースのフレームワークを提案する。
また,影の精度を向上させるための深度改善ネットワークも導入した。
提案手法は,従来の手法に比べてトレーニング(1.3時間)とレンダリング(60フレーム/秒)を著しく高速化する。
論文 参考訳(メタデータ) (2024-09-29T13:32:24Z) - Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
本稿では,レンダリングに偏りをもたらす近似を回避し,最適化に用いた勾配を求める手法を提案する。
これらのバイアスを除去することで、逆レンダリングに基づくレーダランスキャッシュの一般化が向上し、スペクトル反射のような光輸送効果に挑戦する際の品質が向上することを示す。
論文 参考訳(メタデータ) (2024-09-09T17:59:57Z) - Subsurface Scattering for 3D Gaussian Splatting [10.990813043493642]
散乱材料を用いた物体の3次元再構成とリライティングは、表面下の複雑な光輸送のために大きな課題となる。
本稿では,マルチビューOLAT(1光1つ)データを用いてオブジェクトの形状を最適にするためのフレームワークを提案する。
本手法は,インタラクティブな速度で素材編集,リライティング,新しいビュー合成を可能にする。
論文 参考訳(メタデータ) (2024-08-22T10:34:01Z) - 3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes [50.36933474990516]
本研究は, 粒子のトレーシング, 境界体積階層の構築, 高性能なレイトレーシングハードウェアを用いた各画素のレイキャストについて考察する。
半透明粒子の多量処理を効率的に行うために,有界メッシュで粒子をカプセル化するアルゴリズムについて述べる。
実験は、我々のアプローチの速度と精度、およびコンピュータグラフィックスとビジョンにおけるいくつかの応用を実証する。
論文 参考訳(メタデータ) (2024-07-09T17:59:30Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - Neural Radiance Fields for Transparent Object Using Visual Hull [0.8158530638728501]
最近導入されたNeural Radiance Fields (NeRF) はビュー合成法である。
まず,透明物体の3次元形状を視覚的包絡を用いて再構成する。
第二に、スネルの法則に従って透明物体の内部の光線の屈折をシミュレートする。最後に、屈折した光線を通して点をサンプリングし、それをNeRFに挿入する。
論文 参考訳(メタデータ) (2023-12-13T13:15:19Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。