論文の概要: Diffeomorphic Obstacle Avoidance for Contractive Dynamical Systems via Implicit Representations
- arxiv url: http://arxiv.org/abs/2504.18860v1
- Date: Sat, 26 Apr 2025 08:56:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.02328
- Title: Diffeomorphic Obstacle Avoidance for Contractive Dynamical Systems via Implicit Representations
- Title(参考訳): 命令表現による契約型力学系に対する微分型障害物回避
- Authors: Ken-Joel Simmoteit, Philipp Schillinger, Leonel Rozo,
- Abstract要約: 本稿では、デモから学んだダイナミックロボットの安全性と堅牢性を両立させるという課題に対処する。
我々は、学習スキルの堅牢な外挿を提供するために、神経収縮力学系を構築している。
我々は、微分同相変換による収縮安定性を維持するフルボディ障害物回避戦略を設計する。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safety and robustness of robot skills is becoming crucial as robots are required to perform increasingly complex and dynamic tasks. The former is essential when performing tasks in cluttered environments, while the latter is relevant to overcome unseen task situations. This paper addresses the challenge of ensuring both safety and robustness in dynamic robot skills learned from demonstrations. Specifically, we build on neural contractive dynamical systems to provide robust extrapolation of the learned skills, while designing a full-body obstacle avoidance strategy that preserves contraction stability via diffeomorphic transforms. This is particularly crucial in complex environments where implicit scene representations, such as Signed Distance Fields (SDFs), are necessary. To this end, our framework called Signed Distance Field Diffeomorphic Transform, leverages SDFs and flow-based diffeomorphisms to achieve contraction-preserving obstacle avoidance. We thoroughly evaluate our framework on synthetic datasets and several real-world robotic tasks in a kitchen environment. Our results show that our approach locally adapts the learned contractive vector field while staying close to the learned dynamics and without introducing highly-curved motion paths, thus outperforming several state-of-the-art methods.
- Abstract(参考訳): ロボットスキルの安全性と堅牢性の確保は、ロボットがますます複雑でダイナミックなタスクを実行する必要があるため、重要になっている。
前者は乱雑な環境でタスクを実行するのに必須であり、後者は目に見えないタスクを克服するのに重要である。
本稿では、デモから学んだダイナミックロボットの安全性と堅牢性を両立させるという課題に対処する。
具体的には、学習スキルの堅牢な外挿を提供するために、神経収縮力学系を構築し、また、微分同相変換による収縮安定性を維持するフルボディ障害物回避戦略を設計する。
これは、SDF(Signed Distance Fields)のような暗黙的なシーン表現が必要な複雑な環境において特に重要である。
この目的のために,SDF とフローベース微分同相を応用し,収縮保存障害物回避を実現する Signed Distance Field Diffeomorphic Transform というフレームワークを開発した。
キッチン環境における合成データセットと実世界のロボットタスクの枠組みを徹底的に評価した。
以上の結果から,本手法は学習力学に近づきながら局所的に学習された収縮ベクトル場に適応し,高度に曲率の高い運動経路を導入することなく,いくつかの最先端の手法より優れた結果が得られた。
関連論文リスト
- Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
本稿では,Transformerアーキテクチャを活用した拡張性のあるフレームワークであるDitaについて紹介する。
Ditaはコンテキスト内コンディショニング(context conditioning)を採用しており、歴史的観察から生の視覚トークンと識別されたアクションをきめ細やかなアライメントを可能にする。
Ditaは、さまざまなカメラパースペクティブ、観察シーン、タスク、アクションスペースの横断的なデータセットを効果的に統合する。
論文 参考訳(メタデータ) (2025-03-25T15:19:56Z) - Geometrically-Aware One-Shot Skill Transfer of Category-Level Objects [18.978751760636563]
本研究では,ロボットが複雑な物体操作のスキルと制約を1人の人間の実演から伝達することのできる,新しいスキル伝達フレームワークを提案する。
提案手法は,オブジェクト中心のインタラクションに着目したデモンストレーションから幾何学的表現を導出することで,スキル獲得とタスク実行の課題に対処する。
本手法の有効性と適応性を広範囲な実験により検証し,追加の訓練を必要とせず,多様な実環境における技術移転とタスク実行を実証した。
論文 参考訳(メタデータ) (2025-03-19T16:10:17Z) - Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections [9.041849642602626]
信号のない交差点を通る安全かつ効率的な軌道を計画することは、自動運転車にとって重要な課題である。
本研究では,動的高次制御バリア関数(DHOCBF)と拡散モデル(DSC-Diffuser)を統合する安全クリティカルプランニング手法を提案する。
動的環境における運転安全をより確実にするために,提案したDHOCBFフレームワークは周囲の車両の動きを考慮した動的調整を行う。
論文 参考訳(メタデータ) (2024-11-29T11:57:00Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [68.36528819227641]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する2つの未目標攻撃目標と,ロボット軌道を操作する目標攻撃目標を導入する。
我々は、カメラの視野に小さなカラフルなパッチを配置し、デジタルと物理の両方の環境で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Neural Contractive Dynamical Systems [13.046426079291376]
完全自律型ロボットが望ましくない、あるいは潜在的に有害な行動を起こさないためには、安定性の保証が不可欠である。
本稿では,ニューラルアーキテクチャが収縮を保証するニューラル収縮力学系を学習するための新しい手法を提案する。
提案手法は, 現状技術よりも所望の力学を正確に符号化し, 安定性の保証がより少ないことを示す。
論文 参考訳(メタデータ) (2024-01-17T17:18:21Z) - Robotic Handling of Compliant Food Objects by Robust Learning from
Demonstration [79.76009817889397]
本稿では,食品に適合する物体をロボットで把握する上で,実証からの学習(LfD)に基づく頑健な学習方針を提案する。
教師の意図した方針を推定し,無矛盾な実演を自動的に除去するLfD学習ポリシーを提案する。
提案されたアプローチは、前述の業界セクターで幅広い応用が期待できる。
論文 参考訳(メタデータ) (2023-09-22T13:30:26Z) - Learning Riemannian Stable Dynamical Systems via Diffeomorphisms [0.23204178451683263]
有害で自律的なロボットは、精巧な動的動作を巧みに実行できなければならない。
学習技術は、このようなダイナミックスキルのモデルを構築するために利用することができる。
これを実現するために、学習モデルは、所望の運動力学に類似した安定したベクトル場を符号化する必要がある。
論文 参考訳(メタデータ) (2022-11-06T16:28:45Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
学習の観点から,センサを用いたモーションプランニングに対処する。
近年の視覚認識の進歩により,運動計画における適切な表現の学習の重要性が議論されている。
本稿では,PointNetアーキテクチャに基づく新しい障害物表現を提案し,障害物回避ポリシーと共同で学習する。
論文 参考訳(メタデータ) (2020-08-25T17:12:32Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。