論文の概要: Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
- arxiv url: http://arxiv.org/abs/2211.03169v1
- Date: Sun, 6 Nov 2022 16:28:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 18:48:56.632686
- Title: Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
- Title(参考訳): 微分同相写像によるリーマン安定力学系の学習
- Authors: Jiechao Zhang, Hadi Beik-Mohammadi, Leonel Rozo
- Abstract要約: 有害で自律的なロボットは、精巧な動的動作を巧みに実行できなければならない。
学習技術は、このようなダイナミックスキルのモデルを構築するために利用することができる。
これを実現するために、学習モデルは、所望の運動力学に類似した安定したベクトル場を符号化する必要がある。
- 参考スコア(独自算出の注目度): 0.23204178451683263
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dexterous and autonomous robots should be capable of executing elaborated
dynamical motions skillfully. Learning techniques may be leveraged to build
models of such dynamic skills. To accomplish this, the learning model needs to
encode a stable vector field that resembles the desired motion dynamics. This
is challenging as the robot state does not evolve on a Euclidean space, and
therefore the stability guarantees and vector field encoding need to account
for the geometry arising from, for example, the orientation representation. To
tackle this problem, we propose learning Riemannian stable dynamical systems
(RSDS) from demonstrations, allowing us to account for different geometric
constraints resulting from the dynamical system state representation. Our
approach provides Lyapunov-stability guarantees on Riemannian manifolds that
are enforced on the desired motion dynamics via diffeomorphisms built on neural
manifold ODEs. We show that our Riemannian approach makes it possible to learn
stable dynamical systems displaying complicated vector fields on both
illustrative examples and real-world manipulation tasks, where Euclidean
approximations fail.
- Abstract(参考訳): 巧妙で自律的なロボットは精巧な動的動きを巧みに行うことができるべきである。
学習技術は、このようなダイナミックスキルのモデルを構築するために利用することができる。
これを達成するために、学習モデルは所望の運動力学に類似した安定したベクトル場を符号化する必要がある。
ロボットの状態がユークリッド空間上では進化しないため、安定性の保証とベクトル場のエンコーディングは例えば向き表現から生じる幾何学を考慮しなければならないため、これは困難である。
この問題に対処するため、我々は実演からリーマン安定力学系(RSDS)の学習を提案し、力学系状態表現から生じる様々な幾何学的制約を考慮に入れた。
我々のアプローチは、ニューラル多様体 ODE 上に構築された微分同相写像を通じて所望の運動力学に強制されるリーマン多様体に対するリャプノフ安定性を保証する。
我々のリーマン的アプローチにより、実世界の操作タスクと実例の両方に複雑なベクトル場を表示する安定な力学系を学習できることが示され、ユークリッド近似は失敗する。
関連論文リスト
- Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
論文 参考訳(メタデータ) (2024-10-31T06:32:43Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Deep Learning for Koopman-based Dynamic Movement Primitives [0.0]
実証から学ぶために,クープマン演算子と動的運動プリミティブの理論を結合して新しいアプローチを提案する。
我々のアプローチは glsadmd と呼ばれ、非線形力学系を線形潜在空間に射影し、解が所望の複素運動を再現する。
我々の結果は、LASAハンドライトデータセット上の拡張動的モード分解に匹敵するが、わずかな文字のトレーニングしか行わない。
論文 参考訳(メタデータ) (2023-12-06T07:33:22Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。