論文の概要: Sparks: Multi-Agent Artificial Intelligence Model Discovers Protein Design Principles
- arxiv url: http://arxiv.org/abs/2504.19017v1
- Date: Sat, 26 Apr 2025 20:43:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.090987
- Title: Sparks: Multi-Agent Artificial Intelligence Model Discovers Protein Design Principles
- Title(参考訳): マルチエージェントの人工知能モデルがタンパク質設計の原理を発見
- Authors: Alireza Ghafarollahi, Markus J. Buehler,
- Abstract要約: 私たちは、発見サイクル全体を実行するマルチモーダルなマルチエージェントAIモデルであるSparksを紹介します。
火花は独自に厳密な科学的調査を行い、これまで知られていなかった科学的原則を特定できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in artificial intelligence (AI) promise autonomous discovery, yet most systems still resurface knowledge latent in their training data. We present Sparks, a multi-modal multi-agent AI model that executes the entire discovery cycle that includes hypothesis generation, experiment design and iterative refinement to develop generalizable principles and a report without human intervention. Applied to protein science, Sparks uncovered two previously unknown phenomena: (i) a length-dependent mechanical crossover whereby beta-sheet-biased peptides surpass alpha-helical ones in unfolding force beyond ~80 residues, establishing a new design principle for peptide mechanics; and (ii) a chain-length/secondary-structure stability map revealing unexpectedly robust beta-sheet-rich architectures and a "frustration zone" of high variance in mixed alpha/beta folds. These findings emerged from fully self-directed reasoning cycles that combined generative sequence design, high-accuracy structure prediction and physics-aware property models, with paired generation-and-reflection agents enforcing self-correction and reproducibility. The key result is that Sparks can independently conduct rigorous scientific inquiry and identify previously unknown scientific principles.
- Abstract(参考訳): 人工知能(AI)の進歩は自律的な発見を約束するが、ほとんどのシステムはトレーニングデータに潜む知識を再定義する。
我々は、仮説生成、実験設計、反復的改善を含む発見サイクル全体を実行するマルチモーダルなマルチエージェントAIモデルSparksと、人間の介入なしに一般化可能な原則とレポートを開発するためのレポートを提示する。
タンパク質科学に応用されたスパークスは、これまで知られていなかった2つの現象を発見した。
i)βシートバイアスペプチドがαヘリカルペプチドを80残基を超える伸長力で超過し、ペプチド力学の新しい設計原理を確立した長さ依存的な機械的クロスオーバー。
(II) 予期せぬ頑丈なβシートアーキテクチャと混合α/βの高分散の「フラストレーションゾーン」を明らかにする鎖長・二次構造安定マップ。
これらの知見は、生成配列設計、高精度構造予測、物理認識特性モデルと、自己補正と再現性を強制するペア生成・反射剤を組み合わせた完全自己指向推論サイクルから得られた。
主要な結果は、Sparksが独自に厳格な科学的調査を行い、これまで知られていなかった科学的原則を特定できることである。
関連論文リスト
- UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
既存のアプローチは自己回帰シーケンスモデルか拡散モデルのいずれかに依存している。
自己回帰的次トーケン予測と条件拡散モデルを組み合わせた統合フレームワークUniGenXを提案する。
材料および小分子生成タスクにおけるUniGenXの有効性を検証する。
論文 参考訳(メタデータ) (2025-03-09T16:43:07Z) - A Model-Centric Review of Deep Learning for Protein Design [0.0]
ディープラーニングはタンパク質設計を変換し、正確な構造予測、シーケンス最適化、de novoタンパク質生成を可能にした。
ProtGPT2、ProteinMPNN、RFdiffusionなどの生成モデルは、自然進化に基づく制限を超えてシーケンスとバックボーンの設計を可能にした。
最近では、ESM3を含む共同シーケンス構造共設計モデルが両方のモダリティを統一されたフレームワークに統合し、設計性が向上した。
論文 参考訳(メタデータ) (2025-02-26T14:31:21Z) - Towards an AI co-scientist [48.11351101913404]
Gemini 2.0上に構築されたマルチエージェントシステムであるAIコサイシストを紹介する。
このAIの共同科学者は、新しい独創的な知識を解明し、明らかに新しい研究仮説を定式化することを目的としている。
システムの設計には、科学的手法にインスパイアされた仮説生成への生成、議論、進化のアプローチが組み込まれている。
論文 参考訳(メタデータ) (2025-02-26T06:17:13Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本稿では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデル GENERator を提案する。
DNAの386Bbpからなる拡張データセットに基づいて、GENERatorは、確立されたベンチマークと新しく提案されたベンチマークの両方で最先端のパフォーマンスを実証する。
また、特に特定のアクティビティプロファイルを持つエンハンサーシーケンスを即応的に生成することで、シーケンス最適化において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
計算タンパク質科学(Computational protein science)は、タンパク質配列構造-機能パラダイムにおける知識を明らかにすること、および応用を開発することを目的としている。
最近、言語モデル (Language Models, PLM) は、前例のない言語処理と一般化能力のために、AIのマイルストーンとして登場した。
論文 参考訳(メタデータ) (2025-01-17T16:21:18Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate
Folding Landscape and Protein Structure Prediction [28.630603355510324]
そこで我々は,メタ生成モデルであるEvoGenを提案し,貧弱なMSAターゲットに対するAlphaFold2のアンダーパフォーマンスを改善する。
EvoGenは、キャリブレーションまたは実質的に生成されたホモログシーケンスでモデルにプロンプトすることで、AlphaFold2を低データで正確に折り畳むのに役立つ。
論文 参考訳(メタデータ) (2022-08-20T10:23:17Z) - Machine Learning Enabled Discovery of Application Dependent Design
Principles for Two-dimensional Materials [1.1470070927586016]
我々は熱力学、機械的、電子的特性を予測するためにモデルのアンサンブルを訓練する。
ほぼ2つの非結合なアプリケーションに対して,45,000近い構造体をスクリーニングする。
有機-無機ペロブスカイトと鉛とスズとのハイブリッドが太陽電池の応用に好適であることが判明した。
論文 参考訳(メタデータ) (2020-03-19T23:13:50Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。