OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
- URL: http://arxiv.org/abs/2504.19258v2
- Date: Wed, 30 Apr 2025 10:06:51 GMT
- Title: OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
- Authors: Shuhao Kang, Martin Y. Liao, Yan Xia, Olaf Wysocki, Boris Jutzi, Daniel Cremers,
- Abstract summary: OPAL is a novel network for LiDAR place recognition that leverages OpenStreetMap (OSM) as a lightweight and up-to-date prior.<n>Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components.<n>Experiments on the KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at @1m threshold for top-1 retrieved matches.
- Score: 33.87605068407066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR place recognition is a critical capability for autonomous navigation and cross-modal localization in large-scale outdoor environments. Existing approaches predominantly depend on pre-built 3D dense maps or aerial imagery, which impose significant storage overhead and lack real-time adaptability. In this paper, we propose OPAL, a novel network for LiDAR place recognition that leverages OpenStreetMap (OSM) as a lightweight and up-to-date prior. Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components. First, a cross-modal visibility mask that identifies maximal observable regions from both modalities to guide feature learning. Second, an adaptive radial fusion module that dynamically consolidates radial features into discriminative global descriptors. Extensive experiments on the KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at @1m threshold for top-1 retrieved matches, along with 12x faster inference speed compared to the state-of-the-art approach. Code and datasets will be publicly available.
Related papers
- Mapping and Localization Using LiDAR Fiducial Markers [0.8702432681310401]
dissertation proposes a novel framework for mapping and localization using LiDAR fiducial markers.
An Intensity Image-based LiDAR Fiducial Marker (IFM) system is introduced, using thin, letter-sized markers compatible with visual fiducial markers.
New LFM-based mapping and localization method registers unordered, low-overlap point clouds.
arXiv Detail & Related papers (2025-02-05T17:33:59Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
We present LiDAR-GS, a real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes.<n>The method achieves state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving [9.023864430027333]
We propose a 3D Gaussian Splatting-based multimodal place recognition network dubbed GPSR.<n>It explicitly combines multi-view RGB images and LiDAR point clouds into atemporally unified scene representation with the Multimodal Gaussian Splatting.<n>Our method can effectively leverage complementary strengths of both multi-view cameras and LiDAR, achieving SOTA place recognition performance while maintaining solid generalization ability.
arXiv Detail & Related papers (2024-10-01T00:43:45Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
We develop OverlapMamba, a novel network for place recognition as sequences.
Our method effectively detects loop closures showing even when traversing previously visited locations from different directions.
Relying on raw range view inputs, it outperforms typical LiDAR and multi-view combination methods in time complexity and speed.
arXiv Detail & Related papers (2024-05-13T17:46:35Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.<n>Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.<n>This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - Recognize Any Regions [55.76437190434433]
RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.<n>Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
arXiv Detail & Related papers (2023-11-02T16:31:49Z) - RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps [8.625083692154414]
We propose RaLF, a novel deep neural network-based approach for localizing radar scans in a LiDAR map of the environment.
RaLF is composed of radar and LiDAR feature encoders, a place recognition head that generates global descriptors, and a metric localization head that predicts the 3-DoF transformation between the radar scan and the map.
We extensively evaluate our approach on multiple real-world driving datasets and show that RaLF achieves state-of-the-art performance for both place recognition and metric localization.
arXiv Detail & Related papers (2023-09-18T15:37:01Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Gait Recognition in Large-scale Free Environment via Single LiDAR [35.684257181154905]
LiDAR's ability to capture depth makes it pivotal for robotic perception and holds promise for real-world gait recognition.
We present the Hierarchical Multi-representation Feature Interaction Network (HMRNet) for robust gait recognition.
To facilitate LiDAR-based gait recognition research, we introduce FreeGait, a comprehensive gait dataset from large-scale, unconstrained settings.
arXiv Detail & Related papers (2022-11-22T16:05:58Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm.
The sparsity of point clouds, especially for the points far away, makes it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.
We propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI)
FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on baseline, and outperforms competing two-stage approaches.
arXiv Detail & Related papers (2022-09-22T02:07:25Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.