論文の概要: Ridge partial correlation screening for ultrahigh-dimensional data
- arxiv url: http://arxiv.org/abs/2504.19393v1
- Date: Sun, 27 Apr 2025 23:52:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.267725
- Title: Ridge partial correlation screening for ultrahigh-dimensional data
- Title(参考訳): 超高次元データのリッジ偏相関スクリーニング
- Authors: Run Wang, An Nguyen, Somak Dutta, Vivekananda Roy,
- Abstract要約: 本稿では, 絶対試料尾根部分相関の順序付けに基づく, 新規かつ簡易なスクリーニング手法を提案する。
提案手法は回帰係数のリッジ正規化推定だけでなく,予測変数のリッジ正規化部分分散も考慮する。
- 参考スコア(独自算出の注目度): 7.116183305970674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variable selection in ultrahigh-dimensional linear regression is challenging due to its high computational cost. Therefore, a screening step is usually conducted before variable selection to significantly reduce the dimension. Here we propose a novel and simple screening method based on ordering the absolute sample ridge partial correlations. The proposed method takes into account not only the ridge regularized estimates of the regression coefficients but also the ridge regularized partial variances of the predictor variables providing sure screening property without strong assumptions on the marginal correlations. Simulation study and a real data analysis show that the proposed method has a competitive performance compared with the existing screening procedures. A publicly available software implementing the proposed screening accompanies the article.
- Abstract(参考訳): 超高次元線形回帰における可変選択はその計算コストが高いため困難である。
したがって、通常、寸法を著しく減少させるために、変数選択の前にスクリーニングステップが実行される。
本稿では, 絶対試料尾根部分相関の順序付けに基づく, 新規かつ簡易なスクリーニング手法を提案する。
提案手法は, 回帰係数のリッジ正規化推定だけでなく, 差分相関の強い仮定を伴わずに, 確実に遮蔽特性を示す予測変数のリッジ正規化部分分散も考慮する。
シミュレーション研究と実データ解析により,提案手法は既存のスクリーニング手法と比較して競合する性能を示した。
提案されたスクリーニングを実装する公開ソフトウェアは、その記事に付随する。
関連論文リスト
- Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
本研究では,高次元ランダム効果線形モデルの枠組みにおけるメタラーニングについて考察する。
本研究では,データ次元がタスク毎のサンプル数に比例して大きくなる場合に,新しいテストタスクに対する予測リスクの正確な振る舞いを示す。
トレーニングタスクのデータに基づいて,逆回帰係数を推定する手法を提案し,解析する。
論文 参考訳(メタデータ) (2024-03-27T21:18:43Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
高次元データに対する疎線型回帰法は、通常、残留物が一定の分散を持つと仮定するが、これは実際には破ることができる。
本稿では,ヘテロセダスティック分割経験的ベイズ期待条件最大化アルゴリズムを用いて,高次元ヘテロセダスティック線形回帰モデルを推定する。
論文 参考訳(メタデータ) (2023-09-15T22:06:29Z) - High-dimensional analysis of double descent for linear regression with
random projections [0.0]
ランダムな投影数が異なる線形回帰問題を考察し、固定された予測問題に対する二重降下曲線を確実に示す。
まず、リッジ回帰推定器を考察し、非パラメトリック統計学の古典的概念を用いて先行結果を再解釈する。
次に、最小ノルム最小二乗の一般化性能(バイアスと分散の観点から)の同値をランダムな射影に適合させ、二重降下現象の単純な表現を与える。
論文 参考訳(メタデータ) (2023-03-02T15:58:09Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
ブロックワイドなデータは、異なるソースまたはモダリティが相補的な情報を含むマルチソースまたはマルチモダリティデータを統合するときに発生する。
本稿では,未偏差推定方程式に基づいて回帰係数ベクトルを計算効率良く推定する手法を提案する。
アルツハイマー病神経画像イニシアチブの数値的研究と応用分析により、提案手法は既存の方法よりも教師なしのサンプルからより優れた性能と利益を得られることを示した。
論文 参考訳(メタデータ) (2021-06-07T05:12:42Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Fast OSCAR and OWL Regression via Safe Screening Rules [97.28167655721766]
順序付き$L_1$ (OWL)正規化回帰は、高次元スパース学習のための新しい回帰分析である。
近勾配法はOWL回帰を解くための標準手法として用いられる。
未知の順序構造を持つ原始解の順序を探索することにより、OWL回帰の最初の安全なスクリーニングルールを提案する。
論文 参考訳(メタデータ) (2020-06-29T23:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。