論文の概要: Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
- arxiv url: http://arxiv.org/abs/2504.19413v1
- Date: Mon, 28 Apr 2025 01:46:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.283396
- Title: Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
- Title(参考訳): Mem0: スケーラブルな長期メモリでプロダクション対応AIエージェントを構築する
- Authors: Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, Deshraj Yadav,
- Abstract要約: 大規模言語モデル(LLM)は、文脈的に一貫性のある応答を生成する際、顕著な進歩を示した。
しかし、それらの固定されたコンテキストウィンドウは、長時間のマルチセッション対話に対する一貫性を維持するための根本的な課題を生じさせる。
私たちはMem0というスケーラブルなメモリ中心アーキテクチャを導入し、進行中の会話から健全な情報を動的に抽出し、統合し、取得することでこの問題に対処します。
- 参考スコア(独自算出の注目度): 0.5584627289325719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses, yet their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues. We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations. Building on this foundation, we further propose an enhanced variant that leverages graph-based memory representations to capture complex relational structures among conversational elements. Through comprehensive evaluations on LOCOMO benchmark, we systematically compare our approaches against six baseline categories: (i) established memory-augmented systems, (ii) retrieval-augmented generation (RAG) with varying chunk sizes and k-values, (iii) a full-context approach that processes the entire conversation history, (iv) an open-source memory solution, (v) a proprietary model system, and (vi) a dedicated memory management platform. Empirical results show that our methods consistently outperform all existing memory systems across four question categories: single-hop, temporal, multi-hop, and open-domain. Notably, Mem0 achieves 26% relative improvements in the LLM-as-a-Judge metric over OpenAI, while Mem0 with graph memory achieves around 2% higher overall score than the base configuration. Beyond accuracy gains, we also markedly reduce computational overhead compared to full-context method. In particular, Mem0 attains a 91% lower p95 latency and saves more than 90% token cost, offering a compelling balance between advanced reasoning capabilities and practical deployment constraints. Our findings highlight critical role of structured, persistent memory mechanisms for long-term conversational coherence, paving the way for more reliable and efficient LLM-driven AI agents.
- Abstract(参考訳): 大規模言語モデル(LLM)は、文脈的に一貫性のある応答を生成する際、顕著な進歩を見せている。
私たちはMem0というスケーラブルなメモリ中心アーキテクチャを導入し、進行中の会話から健全な情報を動的に抽出し、統合し、取得することでこの問題に対処します。
この基盤を基盤として,グラフベースのメモリ表現を利用して対話要素間の複雑な関係構造をキャプチャする拡張型を提案する。
LOCOMOベンチマークの総合評価を通じて,6つの基準カテゴリに対するアプローチを体系的に比較する。
(i)メモリ拡張システムを確立する。
(II) チャンクサイズやk値の異なる検索増強生成(RAG)。
(iii)会話履歴全体を処理するフルコンテキストアプローチ。
(iv)オープンソースのメモリソリューション。
(v)プロプライエタリなモデルシステム、及び
(vi)専用メモリ管理プラットフォーム。
実験結果から,本手法は,シングルホップ,テンポラリ,マルチホップ,オープンドメインの4つのカテゴリにおいて,既存のメモリシステムよりも一貫して優れていることがわかった。
特に、Mem0はOpenAIよりもLLM-as-a-Judgeの相対的な改善を26%達成し、グラフメモリを備えたMem0はベース構成よりも2%高いスコアを得た。
精度の向上以外にも、フルコンテキスト法と比較して計算オーバーヘッドを著しく削減する。
特に、Mem0は91%低いp95レイテンシを実現し、90%以上のトークンコストを削減している。
我々の研究は、長期会話コヒーレンスのための構造化された永続的記憶機構の重要な役割を強調し、より信頼性が高く効率的なLLM駆動型AIエージェントへの道を開いた。
関連論文リスト
- Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
メモリは、大規模言語モデル(LLM)ベースのエージェントを支える、AIシステムの基本コンポーネントである。
コンソリデーション、更新、インデックス付け、フォッティング、検索、圧縮の6つの基本的なメモリ操作を紹介します。
この調査は、AIのメモリに関する研究、ベンチマークデータセット、ツールに関する構造化された動的視点を提供する。
論文 参考訳(メタデータ) (2025-05-01T17:31:33Z) - Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
「我々は、テキスト・メモリ利用の尺度を策定する。」
この計量は、textitinput-invariant および textitinput-variant linear operator を持つシステムの基本的なクラスに適合する。
論文 参考訳(メタデータ) (2025-04-28T08:12:30Z) - Cognitive Memory in Large Language Models [8.059261857307881]
本稿では,Large Language Models (LLMs) における記憶機構について検討し,文脈に富む応答の重要性,幻覚の減少,効率の向上などを強調した。
メモリは、インプットプロンプト、短期記憶処理の即時コンテキスト、外部データベースや構造を介して実装された長期記憶に対応して、インプットプロンプト、短期記憶、長期記憶に分類する。
論文 参考訳(メタデータ) (2025-04-03T09:58:19Z) - InfiniteICL: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation [57.310236384112834]
In-context Learning (ICL) は、大規模言語モデル(LLM)において重要であるが、その有効性は有限コンテキストウィンドウによって制約される。
本稿では,LLMにおけるコンテキストとパラメータを,短期記憶と長期記憶に並列化するフレームワークであるInfiniteICLを紹介する。
提案手法は,コンテキスト長を90%削減し,フルコンテキストプロンプトの平均性能を103%向上することを示した。
論文 参考訳(メタデータ) (2025-04-02T13:15:44Z) - From RAG to Memory: Non-Parametric Continual Learning for Large Language Models [6.380729797938521]
検索強化世代(RAG)は、新しい情報を導入する主要な方法となっている。
最近のRAGは、知識グラフのような様々な構造を持つベクトル埋め込みを拡大して、いくつかのギャップ、すなわちセンスメイキングと連想性に対処している。
我々は,現実的,感覚的,連想的なメモリタスクにおいて,標準RAGを総合的に上回るフレームワークであるHippoRAG 2を提案する。
論文 参考訳(メタデータ) (2025-02-20T18:26:02Z) - MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation [60.04380907045708]
Retrieval-Augmented Generation (RAG)は、この問題に対処するための有望な戦略と考えられている。
我々は,グローバルメモリ拡張検索による新しいRAGフレームワークであるMemoRAGを提案する。
MemoRAGは、様々な長期コンテキスト評価タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
MeMOはMegatron-LMやDeepSpeedと比べて平均1.97倍と1.80倍のMFUを達成している。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
大規模言語モデル(LLM)は、メモリとランタイムのコストが高いため、長い入力シーケンスを扱うのに苦労する。
本稿では,事前学習した(凍結した)注意に基づくLCMに再学習せずに結合可能な連想記憶モジュールを提案する。
CAMELoTと呼ばれるこのアーキテクチャは、128トークンの小さなコンテキストウィンドウでも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-21T01:00:17Z) - MAMBA: Multi-level Aggregation via Memory Bank for Video Object
Detection [35.16197118579414]
我々は,MAMBAと呼ばれるメモリバンクを用いたマルチレベル集約アーキテクチャを提案する。
具体的には,既存の手法の欠点を解消するために,メモリバンクが2つの新しい操作を施している。
従来の最先端手法と比較して,提案手法は速度と精度の両面で優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-01-18T12:13:06Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - RMM: Reinforced Memory Management for Class-Incremental Learning [102.20140790771265]
クラスインクリメンタルラーニング(CIL)は、厳格な記憶予算の下で分類器を訓練する。
既存のメソッドは静的およびアドホックな戦略を使ってメモリ割り当てを行うが、これはしばしば準最適である。
本稿では,段階的な段階と異なるオブジェクトクラスに最適化された動的メモリ管理戦略を提案する。
論文 参考訳(メタデータ) (2023-01-14T00:07:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。