論文の概要: Negative Imaginary Neural ODEs: Learning to Control Mechanical Systems with Stability Guarantees
- arxiv url: http://arxiv.org/abs/2504.19497v1
- Date: Mon, 28 Apr 2025 05:37:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.335565
- Title: Negative Imaginary Neural ODEs: Learning to Control Mechanical Systems with Stability Guarantees
- Title(参考訳): 負のImaginary Neural ODE:安定保証による機械系の制御の学習
- Authors: Kanghong Shi, Ruigang Wang, Ian R. Manchester,
- Abstract要約: ニューラルコントロール方式を提案する。ニューラルコントロール方式は,ニューラル・ディファレンシャル・ディファレンシャル・ディファレンシャル・ディファレンシャル・ディファレンシャル・コントローラを用いて,機械系の安定化を保証する。
我々は、システムがNI特性を持つことを保証するために、ハミルトニアンフレームワーク内で状態空間関数行列として所望の特性を持つニューラルネットワークを用いる。
位置決め力アクチュエータと位置センサを備えた機械プラントでは、安定に必要な全ての条件が、コントローラで使用されるニューラルネットワークの規則性制約に変換可能であることを実証する。
- 参考スコア(独自算出の注目度): 1.1060425537315086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a neural control method to provide guaranteed stabilization for mechanical systems using a novel negative imaginary neural ordinary differential equation (NINODE) controller. Specifically, we employ neural networks with desired properties as state-space function matrices within a Hamiltonian framework to ensure the system possesses the NI property. This NINODE system can serve as a controller that asymptotically stabilizes an NI plant under certain conditions. For mechanical plants with colocated force actuators and position sensors, we demonstrate that all the conditions required for stability can be translated into regularity constraints on the neural networks used in the controller. We illustrate the utility, effectiveness, and stability guarantees of the NINODE controller through an example involving a nonlinear mass-spring system.
- Abstract(参考訳): ニュートラル制御法として,ニュートラル・ニュートラル・常微分方程式(NINODE)を用いたニュートラル制御法を提案する。
具体的には、ハミルトニアンフレームワーク内の状態空間関数行列として所望の特性を持つニューラルネットワークを用いて、システムがNI特性を持つことを保証する。
このNINODEシステムは、特定の条件下でNI植物を漸近的に安定化させるコントローラとして機能することができる。
位置決め力アクチュエータと位置センサを備えた機械プラントでは、安定に必要な全ての条件が、コントローラで使用されるニューラルネットワークの規則性制約に変換可能であることを実証する。
非線形質量ばねシステムを含む例を通して,NINODEコントローラの実用性,有効性,安定性の保証について述べる。
関連論文リスト
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Synthesizing Neural Network Controllers with Closed-Loop Dissipativity Guarantees [0.6612847014373572]
植物のクラスは、不確実性と相互接続された線形時間不変系(LTI)と見なされる。
プラントの不確かさとニューラルネットワークの非線形性は、どちらも積分二次的制約を用いて記述される。
凸条件はプロジェクションベースのトレーニング手法で、解離性を保証するニューラルネットワークコントローラを合成するために用いられる。
論文 参考訳(メタデータ) (2024-04-10T22:15:28Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
本稿では,ニューラル常微分方程式(ODE)が出力仕様を満たすことを保証するための新しい手法を提案する。
提案手法では,出力仕様を学習システムのパラメータや入力の制約に変換するために,制御障壁関数のクラスを用いる。
論文 参考訳(メタデータ) (2022-10-10T15:18:28Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
本稿では,最適縮尺と対応する微分リャプノフ関数のニューラルネットワークモデルを提案する。
そのイノベーションは、学習ベースの制御フレームワークに対して、正式な堅牢性を保証することである。
論文 参考訳(メタデータ) (2021-10-02T00:28:49Z) - Neural network optimal feedback control with enhanced closed loop
stability [3.0981875303080795]
近年の研究では、教師あり学習は高次元非線形力学系のための最適フィードバックコントローラを設計するための有効なツールであることが示されている。
しかし、これらのニューラルネットワーク(NN)コントローラの挙動はまだよく理解されていない。
本稿では,NNコントローラがシステムの安定化に有効であることを示すために,数値シミュレーションを用いた。
論文 参考訳(メタデータ) (2021-09-15T17:59:20Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
ニューラルネットワーク制御非線形システムの安定性と安定化性の理論を考案する。
このような頑健な安定化NNコントローラの計算には、安定性保証トレーニング(SGT)も提案されている。
論文 参考訳(メタデータ) (2021-09-13T05:09:30Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
我々は、カートポールエージェントを制御するために、ニューラルセルオートマトンを使用する。
我々は、Q値の推定値として出力セルの状態を用いる深層学習を用いてモデルを訓練した。
論文 参考訳(メタデータ) (2021-06-29T10:49:42Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Learning-based Adaptive Control via Contraction Theory [7.918886297003018]
パラメトリック不確実性を有する非線形システムのための新しいディープラーニングに基づく適応制御フレームワーク、Adaptive Neural Contraction Metric (aNCM) を提案する。
aNCMは、不確実性の下でシステムの軌道の安定性と指数有界性を保証する最適適応収縮メトリックのニューラルネットワークモデルを使用する。
論文 参考訳(メタデータ) (2021-03-04T12:19:52Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
線形2次制御器(LQR)としても知られる2次コストモデルの下で線形制御器を研究する。
楕円形不確実性集合内の全ての系を安定化させる制御器を構成する2つの異なる半定値プログラム(SDP)を提案する。
高い確率で安定化コントローラを迅速に識別できる効率的なデータ依存アルゴリズムであるtextsceXplorationを提案する。
論文 参考訳(メタデータ) (2020-06-19T08:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。